Set-membership identification and fault detection using a Bayesian framework

Cita com:
hdl:2117/84709
Document typeArticle
Defense date2016-05-18
Rights accessOpen Access
European Commission's projectEFFINET - Efficient Integrated Real-time Monitoring and Control of Drinking Water Networks (EC-FP7-318556)
ISENSE - Making Sense of Nonsense (EC-FP7-270428)
ISENSE - Making Sense of Nonsense (EC-FP7-270428)
Abstract
This paper deals with the problem of set-membership identification and fault detection using a Bayesian framework. The paper presents how the set-membership model estimation problem can be reformulated from the Bayesian viewpoint in order to, first, determine the feasible parameter set in the identification stage and, second, check the consistency between the measurement data and the model in the fault-detection stage. The paper shows that, assuming uniform distributed measurement noise and uniform model prior probability distributions, the Bayesian approach leads to the same feasible parameter set than the well-known set-membership technique based on approximating the feasible parameter set using sets. Additionally, it can deal with models that are nonlinear in the parameters. The single-output and multiple-output cases are addressed as well. The procedure and results are illustrated by means of the application to a quadruple-tank process.
CitationFernández-Cantí, R. M., Blesa, J., Puig, V., Tornil-Sin, S. Set-membership identification and fault detection using a Bayesian framework. "International journal of systems science", 18 Maig 2016, vol. 47, núm. 7, p. 1710-1724.
ISSN0020-7721
Collections
- SIC - Sistemes Intel·ligents de Control - Articles de revista [107]
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [997]
- SAC - Sistemes Avançats de Control - Articles de revista [328]
- IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Articles de revista [290]
Files | Description | Size | Format | View |
---|---|---|---|---|
Set-membership ... g a Bayesian framework.pdf | 1,862Mb | View/Open |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain