Show simple item record

dc.contributor.authorFagella Rabionet, Núria
dc.contributor.authorMartínez-Seara Alonso, M. Teresa
dc.contributor.authorVillanueva Castelltort, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2007-05-02T16:53:14Z
dc.date.available2007-05-02T16:53:14Z
dc.date.created2003
dc.date.issued2003
dc.identifier.urihttp://hdl.handle.net/2117/846
dc.description.abstractIn this paper we consider the complexification of the Arnold standard family of circle maps given by $\widetilde F_{\alpha,\ep}(u)=u{\rm e}^{{\rm i}\alpha} {\rm e}^{\frac{\ep}{2}(u-\frac{1}{u})}$, with $\alpha=\alpha(\ep)$ chosen so that $\widetilde F_{\alpha(\ep),\ep}$ restricted to the unit circle has a prefixed rotation number $\theta$ belonging to the set of Brjuno numbers. In this case, it is known that $\widetilde F_{\alpha(\ep),\ep}$ is analytically linearizable if $\ep$ is small enough, and so, it has a Herman ring $\widetilde U_{\ep}$ around the unit circle. Using Yoccoz's estimates, one has that \emph{the size} $\widetilde R_\ep$ of $\widetilde U_{\ep}$ (so that $\widetilde U_{\ep}$ is conformally equivalent to $\{u\in\bc:\mbox{ } 1/\widetilde R_\ep < |u| < \widetilde R_\ep\}$) goes to infinity as $\ep\to 0$, but one may ask for its asymptotic behavior. We prove that $\widetilde R_\ep=\frac{2}{\ep}(R_0+{\cal O}(\ep\log\ep))$, where $R_0$ is the conformal radius of the Siegel disk of the complex semistandard map $G(z)=z{\rm e}^{{\rm i}\omega}{\rm e}^z$, where $\omega= 2\pi\theta$. In the proof we use a very explicit quasiconformal surgery construction to relate $\widetilde F_{\alpha(\ep),\ep}$ and $G$, and hyperbolic geometry to obtain the quantitative result.
dc.format.extent33
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subject.lcshDifferentiable dynamical systems
dc.subject.lcshRiemann surfaces
dc.subject.lcshGeometric function theory
dc.subject.otherHerman Rings
dc.subject.otherComplex Standard Family
dc.subject.otherQuantitative Quasiconformal Surgery
dc.titleAsymptotic size of Herman rings of the complex standard family by quantitative quasiconformal surgery
dc.typeArticle
dc.subject.lemacSistemes dinàmics diferenciables
dc.subject.lemacRiemann, Superfícies de
dc.subject.lemacFuncions geomètriques, Teoria de les
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37F Complex dynamical systems
dc.subject.amsClassificació AMS::30 Functions of a complex variable::30C Geometric function theory
dc.subject.amsClassificació AMS::30 Functions of a complex variable::30F Riemann surfaces
dc.rights.accessOpen Access
local.personalitzacitaciotrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record