dc.contributor.author | Fagella Rabionet, Núria |
dc.contributor.author | Martínez-Seara Alonso, M. Teresa |
dc.contributor.author | Villanueva Castelltort, Jordi |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I |
dc.date.accessioned | 2007-05-02T16:53:14Z |
dc.date.available | 2007-05-02T16:53:14Z |
dc.date.created | 2003 |
dc.date.issued | 2003 |
dc.identifier.uri | http://hdl.handle.net/2117/846 |
dc.description.abstract | In this paper we consider the complexification of the Arnold
standard family of circle maps given by $\widetilde
F_{\alpha,\ep}(u)=u{\rm e}^{{\rm i}\alpha} {\rm
e}^{\frac{\ep}{2}(u-\frac{1}{u})}$, with $\alpha=\alpha(\ep)$
chosen so that $\widetilde F_{\alpha(\ep),\ep}$ restricted to the
unit circle has a prefixed rotation number $\theta$ belonging to
the set of Brjuno numbers. In this case, it is known that
$\widetilde F_{\alpha(\ep),\ep}$ is analytically linearizable if
$\ep$ is small enough, and so, it has a Herman ring $\widetilde
U_{\ep}$ around the unit circle. Using Yoccoz's estimates, one has
that \emph{the size} $\widetilde R_\ep$ of $\widetilde U_{\ep}$
(so that $\widetilde U_{\ep}$ is conformally equivalent to
$\{u\in\bc:\mbox{ } 1/\widetilde R_\ep < |u| < \widetilde R_\ep\}$)
goes to infinity as $\ep\to 0$, but one may ask for its asymptotic
behavior.
We prove that
$\widetilde R_\ep=\frac{2}{\ep}(R_0+{\cal O}(\ep\log\ep))$,
where $R_0$ is the conformal radius of the Siegel
disk of the complex semistandard map
$G(z)=z{\rm e}^{{\rm i}\omega}{\rm e}^z$, where $\omega= 2\pi\theta$.
In the proof we
use a very explicit quasiconformal surgery construction to relate
$\widetilde F_{\alpha(\ep),\ep}$ and $G$, and hyperbolic geometry
to obtain the quantitative result. |
dc.format.extent | 33 |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 2.5 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/es/ |
dc.subject.lcsh | Differentiable dynamical systems |
dc.subject.lcsh | Riemann surfaces |
dc.subject.lcsh | Geometric function theory |
dc.subject.other | Herman Rings |
dc.subject.other | Complex Standard Family |
dc.subject.other | Quantitative Quasiconformal Surgery |
dc.title | Asymptotic size of Herman rings of the complex standard family by quantitative quasiconformal surgery |
dc.type | Article |
dc.subject.lemac | Sistemes dinàmics diferenciables |
dc.subject.lemac | Riemann, Superfícies de |
dc.subject.lemac | Funcions geomètriques, Teoria de les |
dc.contributor.group | Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions |
dc.subject.ams | Classificació AMS::37 Dynamical systems and ergodic theory::37F Complex dynamical systems |
dc.subject.ams | Classificació AMS::30 Functions of a complex variable::30C Geometric function theory |
dc.subject.ams | Classificació AMS::30 Functions of a complex variable::30F Riemann surfaces |
dc.rights.access | Open Access |
local.personalitzacitacio | true |