Green matrices associated with generalized linear polyominoes
View/Open
Cita com:
hdl:2117/84592
Document typeArticle
Defense date2015
PublisherElsevier
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
A polyomino is an edge-connected union of cells in the planar
square lattice. Here we consider generalized linear polyominoes;
that is, the polyominoes supported by an n × 2 lattice. In this
paper, we obtain the Green function and the Kirchhoff index of a
generalized linear polyomino as a perturbation of a 2n-path by adding
weighted edges between opposite vertices. This approach deeply links
generalized linear polyomino Green functions with the inverse M-matrix
problem, and especially with the so-called Green matrices.
CitationCarmona, A., Encinas, A., Mitjana, M. Green matrices associated with generalized linear polyominoes. "Linear algebra and its applications", 2015, vol. 468, p. 38-47.
ISSN0024-3795
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0024379514000238
Collections
- COMPTHE - Combinatòria i Teoria Discreta del Potencial pel control de paràmetres en xarxes - Articles de revista [29]
- Departament de Matemàtiques - Articles de revista [3.321]
- COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions - Articles de revista [290]
- VARIDIS - Varietats Riemannianes Discretes i Teoria del Potencial - Articles de revista [14]
Files | Description | Size | Format | View |
---|---|---|---|---|
CEM-GreenMatrices.UPC.pdf | 341,6Kb | View/Open |