Show simple item record

dc.contributor.authorSangüesa i Sole, Ramon
dc.contributor.authorCabós, Joan
dc.contributor.authorCortés García, Claudio Ulises
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.identifier.citationSangüesa, R., Cabós, J., Cortes, C. "Probabilistic conditional independence: a similarity-based measure and its application to causal network learning". 1996.
dc.description.abstractA new definition for similarity between possibility distributions is introduced and discussed as a basis for detecting dependence between variables by measuring the similarity degree of their respective distributions. This new definition is used to detect conditional independence relations in possibility distributions derived from data. This is the basis for a new hybrid algorithm for recovering possibilistic causal networks. The algorithm POSSCAUSE is presented and its applications discussed and compared with analogous developments in possibilistic and probabilistic causal networks learning.
dc.format.extent19 p.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subject.otherPossibility distributions
dc.titleProbabilistic conditional independence: a similarity-based measure and its application to causal network learning
dc.typeExternal research report
dc.contributor.groupUniversitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
local.citation.authorSangüesa, R.; Cabós, J.; Cortes, C.

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder