Show simple item record

dc.contributor.authorOliver Olivella, Xavier
dc.contributor.authorHartmann, S
dc.contributor.authorCante Terán, Juan Carlos
dc.contributor.authorWeyler Pérez, Rafael
dc.contributor.authorHernández Ortega, Joaquín Alberto
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
dc.identifier.citationOliver, J. [et al.]. A contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis. "Computer methods in applied mechanics and engineering", Març 2009, vol. 198, p. 2591-2606.
dc.descriptionContinua a l'article "A contact domain method for large deformation frictional contact problems. Part 2: Numerical aspects" publicat a la revista "Computer methods in applied mechanics and engineering", 2009, vol. 198, p. 2607-2631.
dc.description.abstractIn the first part of this work, the theoretical basis of a frictional contact domain method for two-dimensional large deformation problems is presented. Most of the existing contact formulations impose the contact constraints on the boundary of one of the contacting bodies, which necessitates the projection of certain quantities from one contacting surface onto the other. In this work, the contact constraints are formulated on a so-called contact domain, which has the same dimension as the contacting bodies. This contact domain can be interpreted as a fictive intermediate region connecting the potential contact surfaces of the deformable bodies. The introduced contact domain is subdivided into a non-overlapping set of patches and is endowed with a displacement field, interpolated from the displacements at the contact surfaces. This leads to a contact formulation that is based on dimensionless, strain-like measures for the normal and tangential gaps and that exactly passes the contact patch test. In addition, the contact constraints are enforced using a stabilized Lagrange multiplier formulation based on an interior penalty method (Nitsche method). This allows the condensation of the introduced Lagrange multipliers and leads to a purely displacement driven problem. An active set strategy, based on the concept of effective gaps as entities suitable for smooth extrapolation, is used for determining the active normal stick and slip patches of the contact domain.
dc.format.extent16 p.
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Mecànica
dc.subject.lcshContact mechanics
dc.titleA contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis
dc.subject.lemacMecànica de contacte
dc.contributor.groupUniversitat Politècnica de Catalunya. LITEM - Laboratori per a la Innovació Tecnològica d'Estructures i Materials
dc.contributor.groupUniversitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
dc.description.versionPostprint (published version)
local.citation.authorOliver, J.; Hartmann, S.; Cante, J.; Weyler, R.; Hernández, J.A.
local.citation.publicationNameComputer methods in applied mechanics and engineering

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder