Steroid hydroxylation by basidiomycete peroxygenases: A combined experimental and computational study, Applied and environmental microbiology
View/Open
Cita com:
hdl:2117/84361
Document typeArticle
Defense date2015-04-10
PublisherASM Journals
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectINDOX - Optimized oxidoreductases for medium and large scale industrial biotransformations (EC-FP7-613549)
PEROXICATS - Novel and more robust fungal peroxidases as industrial biocatalysts (EC-FP7-265397)
PELE - P.E.L.E (Protein Energy Landscape Exploration): a la carte drug design tools (EC-FP7-250277)
PEROXICATS - Novel and more robust fungal peroxidases as industrial biocatalysts (EC-FP7-265397)
PELE - P.E.L.E (Protein Energy Landscape Exploration): a la carte drug design tools (EC-FP7-250277)
Abstract
The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H2O2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106–118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed.
CitationBabot, Esteban D. [et al.]. Steroid hydroxylation by basidiomycete peroxygenases: A combined experimental and computational study, Applied and environmental microbiology. "Applied and Environmental Microbiology", 10 Abril 2015, vol. 81, núm. 12, p. 4130-4142.
ISSN0099-2240
Publisher versionhttp://aem.asm.org/content/81/12/4130.full
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
steroid hydroxilation.pdf | 3,628Mb | View/Open |