Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase

View/Open
Cita com:
hdl:2117/84358
Document typeArticle
Defense date2015-02-23
PublisherFEBSPress
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectSISTEMAS DEPENDIENTES DE FLAVOENZIMAS: DE SUS MECANISMOS DE ACCION A SUS APLICACIONES BIOTECNOLOGICAS Y SANITARIAS (MINECO-BIO2013-42978-P)
BUSQUEDA E INGENIERIA DE NUEVAS PEROXIDASAS FUNGICAS DE ALTO POTENCIAL REDOX (MICINN-BIO2011-26694)
QM%2FMM E-PATHWAY: ESTUDIO DE TRANSFERENCIAS ELECTRONICAS DE LARGO ALCANCE. (MICINN-CTQ2010-18123)
INDOX - Optimized oxidoreductases for medium and large scale industrial biotransformations (EC-FP7-613549)
PELE - P.E.L.E (Protein Energy Landscape Exploration): a la carte drug design tools (EC-FP7-250277)
BUSQUEDA E INGENIERIA DE NUEVAS PEROXIDASAS FUNGICAS DE ALTO POTENCIAL REDOX (MICINN-BIO2011-26694)
QM%2FMM E-PATHWAY: ESTUDIO DE TRANSFERENCIAS ELECTRONICAS DE LARGO ALCANCE. (MICINN-CTQ2010-18123)
INDOX - Optimized oxidoreductases for medium and large scale industrial biotransformations (EC-FP7-613549)
PELE - P.E.L.E (Protein Energy Landscape Exploration): a la carte drug design tools (EC-FP7-250277)
Abstract
Aryl-alcohol oxidase (AAO, EC 1.1.3.7) generates H2O2 for lignin degradation at the expense of benzylic and other π system-containing primary alcohols, which are oxidized to the corresponding aldehydes. Ligand diffusion studies on Pleurotus eryngii AAO showed a T-shaped stacking interaction between the Tyr92 side chain and the alcohol substrate at the catalytically competent position for concerted hydride and proton transfers. Bi-substrate kinetics analysis revealed that reactions with 3-chloro- or 3-fluorobenzyl alcohols (halogen substituents) proceed via a ping–pong mechanism. However, mono- and dimethoxylated substituents (in 4-methoxybenzyl and 3,4-dimethoxybenzyl alcohols) altered the mechanism and a ternary complex was formed. Electron-withdrawing substituents resulted in lower quantum mechanics stacking energies between aldehyde and the tyrosine side chain, contributing to product release, in agreement with the ping–pong mechanism observed in 3-chloro- and 3-fluorobenzyl alcohol kinetics analysis. In contrast, the higher stacking energies when electron donor substituents are present result in reaction of O2 with the flavin through a ternary complex, in agreement with the kinetics of methoxylated alcohols. The contribution of Tyr92 to the AAO reaction mechanism was investigated by calculation of stacking interaction energies and site-directed mutagenesis. Replacement of Tyr92 by phenylalanine does not alter the AAO kinetic constants (on 4-methoxybenzyl alcohol), most probably because the stacking interaction is still possible. However, introduction of a tryptophan residue at this position strongly reduced the affinity for the substrate (i.e. the pre-steady state Kd and steady-state Km increase by 150-fold and 75-fold, respectively), and therefore the steady-state catalytic efficiency, suggesting that proper stacking is impossible with this bulky residue. The above results confirm the role of Tyr92 in substrate binding, thus governing the kinetic mechanism in AAO.
Description
This is the peer reviewed version of the following article: [Ferreira, P., Hernández-Ortega, A., Lucas, F., Carro, J., Herguedas, B., Borrelli, K. W., Guallar, V., Martínez, A. T. and Medina, M. (2015), Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. FEBS J, 282: 3091–3106. doi:10.1111/febs.13221], which has been published in final form at [10.1111/febs.13221]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." http://olabout.wiley.com/WileyCDA/Section/id-820227.html
The version posted may not be updated or replaced with the final published version (the Version of Record).
CitationFerreira, Patricia [et al.]. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. "FEBS Journal", 23 Febrer 2015, vol. 282, núm. 16, p. 3091-3106.
ISSN1742-464X
Publisher versionhttps://febs.onlinelibrary.wiley.com/doi/abs/10.1111/febs.13221
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
aromatic stacking.pdf | 384,3Kb | View/Open |