Show simple item record

dc.contributor.authorAfonso, Juan Carlos
dc.contributor.authorZlotnik, Sergio
dc.contributor.authorDíez, Pedro
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2016-03-14T09:21:16Z
dc.date.available2016-10-31T01:30:22Z
dc.date.issued2015-10-25
dc.identifier.citationAfonso, J. C., Zlotnik, S., Diez, P. An efficient and general approach for implementing thermodynamic phase equilibria information in geophysical and geodynamic studies. "Geochemistry geophysics geosystems", 25 Octubre 2015, vol. 16, núm. 10, p. 3767-3777.
dc.identifier.issn1525-2027
dc.identifier.urihttp://hdl.handle.net/2117/84276
dc.description.abstractWe present a flexible, general, and efficient approach for implementing thermodynamic phase equilibria information (in the form of sets of physical parameters) into geophysical and geodynamic studies. The approach is based on Tensor Rank Decomposition methods, which transform the original multidimensional discrete information into a separated representation that contains significantly fewer terms, thus drastically reducing the amount of information to be stored in memory during a numerical simulation or geophysical inversion. Accordingly, the amount and resolution of the thermodynamic information that can be used in a simulation or inversion increases substantially. In addition, the method is independent of the actual software used to obtain the primary thermodynamic information, and therefore, it can be used in conjunction with any thermodynamic modeling program and/or database. Also, the errors associated with the decomposition procedure are readily controlled by the user, depending on her/his actual needs (e.g., preliminary runs versus full resolution runs). We illustrate the benefits, generality, and applicability of our approach with several examples of practical interest for both geodynamic modeling and geophysical inversion/modeling. Our results demonstrate that the proposed method is a competitive and attractive candidate for implementing thermodynamic constraints into a broad range of geophysical and geodynamic studies. MATLAB implementations of the method and examples are provided as supporting information and can be downloaded from the journal's website.
dc.format.extent11 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshGeophysica
dc.subject.otherModeling
dc.subject.otherData analysis: algorithms and implementation
dc.subject.otherEarth's interior: composition and state
dc.subject.otherPlanetary interiors
dc.subject.otherInverse theory
dc.subject.otherthermodynamics
dc.subject.othergeophysical inversion
dc.subject.othergeodynamic modeling
dc.subject.otherefficient algorithm
dc.titleAn efficient and general approach for implementing thermodynamic phase equilibria information in geophysical and geodynamic studies
dc.typeArticle
dc.subject.lemacGeofísica
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1002/2015GC006031
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::86 Geophysics
dc.relation.publisherversionhttp://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GC006031/full
dc.rights.accessOpen Access
drac.iddocument17087908
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorAfonso, J. C., Zlotnik, S., Diez, P.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameGeochemistry geophysics geosystems
upcommons.citation.volume16
upcommons.citation.number10
upcommons.citation.startingPage3767
upcommons.citation.endingPage3777


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain