Show simple item record

dc.contributor.authorDelshams Valdés, Amadeu
dc.contributor.authorHuguet Casades, Gemma
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2010-07-27T10:03:34Z
dc.date.available2010-07-27T10:03:34Z
dc.date.issued2010-07
dc.identifier.urihttp://hdl.handle.net/2117/8414
dc.description.abstractIn this paper we consider a representative a priori unstable Hamiltonian system with 2 + 1/2 degrees of freedom, to which we apply the geometric mechanism for diffusion introduced in the paper Delshams et al., Mem. Amer. Math. Soc. 2006, and generalized in Delshams and Huguet, Nonlinearity 2009, and provide explicit, concrete and easily verifiable conditions for the existence of diffusing orbits. The simplification of the hypotheses allows us to perform explicitly the computations along the proof, which contribute to present in an easily understandable way the geometric mechanism of diffusion. In particular, we fully describe the construction of the scattering map and the combination of two types of dynamics on a normally hyperbolic invariant manifold.
dc.format.extent27 p.
dc.language.isoeng
dc.relation.ispartofseries[prepr201004DelH]
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.titleA geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems
dc.typeExternal research report
dc.subject.lemacHamilton, Sistemes de
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.relation.publisherversionhttp://www.ma1.upc.edu/recerca/preprints/2010/prepr201001delshams.pdf
dc.rights.accessOpen Access
drac.iddocument2595187
dc.description.versionPreprint


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain