Show simple item record

dc.contributor.authorGeyer, Anna
dc.contributor.authorMañosa Fernández, Víctor
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2016-03-09T12:50:56Z
dc.date.available2016-03-09T12:50:56Z
dc.date.issued2016-10
dc.identifier.citationGeyer, A., Mañosa, V. Singular solutions for a class of traveling wave equations arising in hydrodynamics. "Nonlinear analysis: real world applications", Octubre 2016, vol. 31, p. 57-76.
dc.identifier.issn1468-1218
dc.identifier.urihttp://hdl.handle.net/2117/84045
dc.description.abstractWe give an exhaustive characterization of singular weak solutions for some singular ordinary differential equations. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa-Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems.
dc.format.extent20 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals
dc.subject.lcshDifferential equations, Partial
dc.subject.lcshHydrodynamics
dc.subject.otherTraveling waves
dc.subject.otherPeriodic solutions
dc.subject.otherCamassa-Holm equations
dc.subject.otherHydrodinamics
dc.titleSingular solutions for a class of traveling wave equations arising in hydrodynamics
dc.typeArticle
dc.subject.lemacEquacions diferencials parcials
dc.subject.lemacHidrodinàmica
dc.subject.lemacEquacions diferencials singulars
dc.contributor.groupUniversitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
dc.identifier.doi10.1016/j.nonrwa.2016.01.009
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::35 Partial differential equations::35Q Equations of mathematical physics and other areas of application
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory
dc.subject.amsClassificació AMS::76 Fluid mechanics::76B Incompressible inviscid fluids
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37N Applications
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1468121816000109
dc.rights.accessOpen Access
drac.iddocument17506026
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/6PN/DPI2011-25822
dc.relation.projectidinfo:eu-repo/grantAgreement/AGAUR/PRI2010-2013/2014SGR859
upcommons.citation.authorGeyer, A., Mañosa, V.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameNonlinear analysis: real world applications
upcommons.citation.volume31
upcommons.citation.startingPage57
upcommons.citation.endingPage76


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution 3.0 Spain