Show simple item record

dc.contributor.authorIesan, Dorin
dc.contributor.authorQuintanilla de Latorre, Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2016-03-09T12:26:43Z
dc.date.available2018-01-30T01:30:27Z
dc.date.issued2016-05-15
dc.identifier.citationIesan, D., Quintanilla, R. Strain gradient theory of chiral Cosserat thermoelasticity without energy dissipation. "Journal of mathematical analysis and applications", 15 Maig 2016, vol. 437, núm. 2, p. 1219-1235.
dc.identifier.issn0022-247X
dc.identifier.urihttp://hdl.handle.net/2117/84039
dc.description.abstractIn this paper, we use the Green–Naghdi theory of thermomechanics of continua to derive a linear strain gradient theory of Cosserat thermoelastic bodies. The theory is capable of predicting a finite speed of heat propagation and leads to a symmetric conductivity tensor. The constitutive equations for isotropic chiral thermoelastic materials are presented. In this case, in contrast with the classical Cosserat thermoelasticity, a thermal field produces a microrotation of the particles. The thermal field is influenced by the displacement and microrotation fields even in the equilibrium theory. Existence and uniqueness results are established. The theory is used to study the effects of a concentrated heat source in an unbounded homogeneous and isotropic chiral solid.
dc.format.extent17 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals
dc.subject.lcshThermoelasticity
dc.subject.lcshDifferential equations, Partial
dc.subject.otherChiral materials
dc.subject.otherCosserat elasticity
dc.subject.otherStrain gradient thermoelasticity
dc.subject.otherHyperbolic heat equation
dc.subject.otherUniqueness results
dc.subject.otherConcentrated heat source
dc.titleStrain gradient theory of chiral Cosserat thermoelasticity without energy dissipation
dc.typeArticle
dc.subject.lemacTermoelasticitat
dc.subject.lemacEquacions diferencials parcials
dc.contributor.groupUniversitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
dc.identifier.doi10.1016/j.jmaa.2016.01.058
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::35 Partial differential equations::35Q Equations of mathematical physics and other areas of application
dc.rights.accessOpen Access
drac.iddocument17493859
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MTM2013-42004-P
upcommons.citation.authorIesan, D., Quintanilla, R.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameJournal of mathematical analysis and applications
upcommons.citation.volume437
upcommons.citation.number2
upcommons.citation.startingPage1219
upcommons.citation.endingPage1235


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain