Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

57.066 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamics close to a non semi-simple 1: -1 resonant periodic orbit.

Thumbnail
View/Open
0301OllePV1.pdf (595,9Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/840

Show full item record
Ollé Torner, MercèMés informacióMés informacióMés informació
Pacha Andújar, Juan RamónMés informacióMés informacióMés informació
Villanueva Castelltort, JordiMés informacióMés informacióMés informació
Document typeArticle
Defense date2003
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 2.5 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 2.5 Spain
Abstract
In this work, our target is to analyze the dynamics around the $1:-1$ resonance which appears when a family of periodic orbits of a real analytic three-degree of freedom Hamiltonian system changes its stability from elliptic to a complex hyperbolic saddle passing through degenerate elliptic. Our analytical approach consists of computing, in a constructive way and up to some given arbitrary order, the normal form around that resonant (or \emph{critical}) periodic orbit. Hence, dealing with the normal form itself and the differential equations related to it, we derive the generic existence of a two-parameter family of invariant 2D tori which bifurcate from the critical periodic orbit. Moreover, the coefficient of the normal form that determines the stability of the bifurcated tori is identified. This allows us to show the Hopf-like character of the unfolding: elliptic tori unfold ``around'' hyperbolic periodic orbits (case of \emph{direct} bifurcation) while normal hyperbolic tori appear ``around'' elliptic periodic orbits (case of \emph{inverse} bifurcation). Further, a global description of the dynamics of the normal form is also given.
URIhttp://hdl.handle.net/2117/840
Collections
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions - Articles de revista [415]
  • Departament de Matemàtiques - Articles de revista [2.895]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
0301OllePV1.pdf595,9KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina