Show simple item record

dc.contributor.authorMir, Arnau
dc.contributor.authorDelshams Valdés, Amadeu
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.description.abstractPsi-series (i.e., logarithmic series) of $m$-dimensional polynomial systems are considered. Its existence and convergence is studied, and an algorithm of location of logarithmic singularities is developed. Moreover, the relationship between psi-series and non-integrability is stressed and in particular it is stated that $m$-dimensional polynomial systems with psi-series which do not reduce to Laurent series do not have $m-1$ independent algebraic first integrals.
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.lcshDifferential equations
dc.subject.lcshDifferential equations
dc.subject.otherpolynomial systems
dc.titlePsi-series, singularities of solutions and integrability of polynomial systems
dc.subject.lemacEquacions diferencials ordinàries
dc.subject.lemacEquacions diferencials funcionals
dc.subject.lemacEquacions en diferències
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34A General theory
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34M Differential equations in the complex domain
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain