Show simple item record

dc.contributor.authorNoy Serrano, Marcos
dc.contributor.authorRavelomanana, Vlady
dc.contributor.authorRue, Juanjo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.identifier.citationNoy, M., Ravelomanana, V., Rue, J. On the probability of planarity of a random graph near the critical point. "Proceedings of the American Mathematical Society", 01 Març 2015, vol. 143, núm. 3, p. 925-936.
dc.description.abstractLet G(n, M) be the uniform random graph with n vertices and M edges. Erdos and Renyi (1960) conjectured that the limiting probability; lim(n ->infinity) Pr{G(n, n/2) is planar}; exists and is a constant strictly between 0 and 1. Luczak, Pittel and Wierman (1994) proved this conjecture, and Janson, Luczak, Knuth and Pittel (1993) gave lower and upper bounds for this probability. In this paper we determine the exact limiting probability of a random graph being planar near the critical point M = n/2. For each lambda, we find an exact analytic expression for; p(lambda) = lim(n ->infinity) Pr {G (n, n/2 (1 + lambda(n-1/3))) is planar}.; In particular, we obtain p(0) approximate to 0.99780. We extend these results to classes of graphs closed under taking minors. As an example, we show that the probability of G(n, n/2) being series-parallel converges to 0.98003. For the sake of completeness and exposition we reprove in a concise way several basic properties we need of a random graph near the critical point.
dc.format.extent12 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.otherasymptotic enumeration
dc.titleOn the probability of planarity of a random graph near the critical point
dc.contributor.groupUniversitat Politècnica de Catalunya. MD - Matemàtica Discreta
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorNoy, M., Ravelomanana, V., Rue, J.
upcommons.citation.publicationNameProceedings of the American Mathematical Society

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain