Show simple item record

dc.contributor.authorPastorino Carraz, David
dc.contributor.authorCanal Barnils, Cristina
dc.contributor.authorGinebra Molins, Maria Pau
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2016-02-29T11:35:20Z
dc.date.available2017-12-01T01:30:37Z
dc.date.issued2015
dc.identifier.citationPastorino, D., Canal, C., Ginebra, M.P. Multiple characterization study on porosity and pore structure of calcium phosphate cements. "Acta biomaterialia", 2015, vol. 28, p. 205-214.
dc.identifier.issn1742-7061
dc.identifier.urihttp://hdl.handle.net/2117/83539
dc.description.abstractCharacterization of the intricate pore structure of calcium phosphate cements is a key step to successfully link the structural properties of these synthetic bone grafts with their most relevant properties, such as in vitro or in vivo behaviour, drug loading and release properties, or degradation over time. This is a challenging task due to the wide range of pore sizes in calcium phosphate cements, compared to most other ceramic biomaterials. This work provides a critical assessment of three different techniques based on different physical phenomena, namely mercury intrusion porosimetry (MIP), Nitrogen sorption, and thermoporometry (TPM) for the detailed characterization of four calcium phosphate cements with different textural properties in terms of total porosity, pore size distribution (PSD), and pore entrance size distribution (PESD). MIP covers a much wider size range than TPM and Nitrogen sorption, offering more comprehensive information at the micrometer level. TPM, and especially Nitrogen sorption, are non-destructive techniques and, although they cover a limited size range, provide complementary information regarding pore structure associated with crystal shape at the nanoscale, recording both PSD and PESD in a single experiment. MIP tended to register smaller sizes, especially at low L/P ratios, due to the network effect, which has a strong influence on the outcome of this technique. Statement of significance The detailed characterisation of the porosity of calcium phosphate cements is of paramount importance, since it is a key parameter influencing some of the most relevant features, like mechanical properties, degradation rate or drug loading and release kinetics. However, this is a challenging task because, once hardened, calcium phosphate cements present an intricate morphology, consisting of a network of precipitated crystals, which generate a high intrinsic micro/nano porosity, with pore sizes covering six orders of magnitude. This work provides for the first time a critical assessment of the advantages and limitations of three different techniques, namely mercury intrusion porosimetry, Nitrogen sorption and Thermoporometry, for the characterisation of the porosity of four calcium phosphate cements with different textural propertie
dc.format.extent10 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshCalcium Phosphates
dc.subject.lcshBone cements
dc.subject.otherCalcium phosphate cement
dc.subject.otherPorosity
dc.subject.otherNitrogen sorption
dc.subject.otherMercury intrusion porosimetry
dc.subject.otherThermoporometry
dc.subject.otherPore size distribution
dc.subject.otherSynthetic bone graft
dc.subject.otherNanostructured materials
dc.titleMultiple characterization study on porosity and pore structure of calcium phosphate cements
dc.typeArticle
dc.subject.lemacFosfat de calci
dc.subject.lemacCiments ossis
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.identifier.doi10.1016/j.actbio.2015.09.017
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1742706115301112
dc.rights.accessOpen Access
drac.iddocument17529742
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MAT2012-38438-C03-01
upcommons.citation.authorPastorino, D.; Canal, C.; Ginebra, M.P.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameActa biomaterialia
upcommons.citation.volume28
upcommons.citation.startingPage205
upcommons.citation.endingPage214


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain