Decay of solutions for a mixture of thermoelastic solids with different temperatures

View/Open
Cita com:
hdl:2117/83494
Document typeArticle
Defense date2016-02-06
Rights accessOpen Access
Abstract
We study a system modeling thermomechanical deformations for mixtures of thermoelastic solids with two different temperatures, that is, when each component of the mixture has its own temperature. In particular, we investigate the asymptotic behavior of the related solutions. We prove the exponential stability of solutions for a generic class of materials. In case of the coupling matrix View the MathML source being singular, we find that in general the corresponding semigroup is not exponentially stable. In this case we obtain that the corresponding solution decays polynomially as t-1/2 in case of Neumann boundary condition. Additionally, we show that the rate of decay is optimal. For Dirichlet boundary condition, we prove that the rate of decay is t-1/6. Finally, we demonstrate the impossibility of time-localization of solutions in case that two coefficients (related with the thermal conductivity constants) agree.
CitationMuñoz, J., Naso, M., Quintanilla, R. Decay of solutions for a mixture of thermoelastic solids with different temperatures. "Computers & mathematics with applications", 06 Febrer 2016, vol. 71, núm. 4, p. 991-1009.
ISSN0898-1221
Files | Description | Size | Format | View |
---|---|---|---|---|
Mixt2tem11-for_review.pdf | 386,4Kb | View/Open |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain