Show simple item record

dc.contributor.authorÁlvarez Montaner, Josep
dc.contributor.authorZarzuela Armengou, Santiago
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2007-05-02T15:57:27Z
dc.date.available2007-05-02T15:57:27Z
dc.date.created2002
dc.date.issued2003
dc.identifier.citationAlvarez Montaner, Josep; Zarzuela, Santiago. “Linearization of local cohomology modules”. A: Commutative algebra : interactions with algebraic geometry. Providence : American Mathematical Society, 2003, p.1-13. (Contemporary mathematics; 331). ISBN 0821832336.
dc.identifier.isbn0821832336
dc.identifier.urihttp://hdl.handle.net/2117/833
dc.description.abstractThe aim of this work is to describe the linear structure of regular holonomic $\mathcal D$-modules with support a normal crossing with variation zero introduced in [Local cohomology, arrangements of subspaces and monomial ideals, to appear in Adv. in Math.] with special regard to the case of local cohomology modules supported on monomial ideals.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherAmerican Mathematical Society
dc.subject.lcshAnalytic spaces
dc.subject.lcshAlgebra, Homological
dc.subject.otherLocal cohomology
dc.subject.othermonomial Ideals
dc.subject.otherD-modules
dc.titleLinearization of local cohomology modules
dc.typePart of book or chapter of book
dc.subject.lemacEspais analítics
dc.subject.lemacHomologia, Teoria d'
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::13 Commutative rings and algebras::13D Homological methods
dc.subject.amsClassificació AMS::32 Several complex variables and analytic spaces::32C Analytic spaces
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder