Show simple item record

dc.contributor.authorTrevisan, Luca
dc.contributor.authorXhafa Xhafa, Fatos
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2016-02-18T14:20:05Z
dc.date.available2016-02-18T14:20:05Z
dc.date.issued1996-09
dc.identifier.citationTrevisan, L., Xhafa, F. "The Parallel complexity of positive linear programming". 1996.
dc.identifier.urihttp://hdl.handle.net/2117/83123
dc.description.abstractIn this paper we study the parallel complexity of Positive Linear Programming (PLP), i.e. the special case of Linear Programming in packing/covering form where the input constraint matrix and constraint vector consist entirely of positive entries. We show that the problem of exactly solving PLP is P-complete. Luby and Nisan gave an NC approximation algorithm for PLP, and their algorithm can be used to approximate the size of the largest matching in bipartite graphs, or to approximate the size of the set cover to within a factor $(1+epsilon) ln Delta$, where $Delta$ is the maximum degree in the set system. Trevisan used positive linear programming in combination with Luby and Nisan's algorithm to obtain an NC $(3/4-epsilon)$-approximate algorithm for Max SAT. An important implication of our result is that, by using the Linear Programming technique, we cannot exactly compute in NC the cardinality of Maximum Matching in bipartite graphs or finding a $(ln Delta)$-approximation for Minimum Set Cover, or a 3/4-approximation of an instance of Maximum SAT, unless P=NC.
dc.format.extent5 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Informàtica teòrica
dc.subject.otherPositive linear programming
dc.subject.otherPLP
dc.subject.otherComplexity
dc.titleThe Parallel complexity of positive linear programming
dc.typeExternal research report
dc.rights.accessOpen Access
local.identifier.drac647399
dc.description.versionPostprint (published version)
local.citation.authorTrevisan, L.; Xhafa, F.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder