Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian
View/Open
energy.pdf (333,1Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2010-11
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
We establish sharp energy estimates for some solutions, such as global minimizers, monotone solutions and saddle-shaped solutions, of the fractional nonlinear equation 1/2 in R n. Our energy estimates hold for every nonlinearity and are sharp since they are optimal for one-dimensional solutions, that is, for solutions depending only on one Euclidian variable.
As a consequence, in dimension , we deduce the one-dimensional symmetry of every global minimizer and of every monotone solution. This result is the analog of a conjecture of De Giorgi on one-dimensional symmetry for the classical equation in R n.
CitationCabré, X.; Cinti, E. Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian. "Discrete and continuous dynamical systems. Series A", Novembre 2010, vol. 28, núm. 3, p. 1179-1206.
ISSN1078-0947
Publisher versionhttp://aimsciences.org/journals/pdfs.jsp?paperID=5131&mode=full
Files | Description | Size | Format | View |
---|---|---|---|---|
energy.pdf![]() | 333,1Kb | Restricted access |