Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian
Visualitza/Obre
energy.pdf (333.1Kb) (Accés restringit)
Tipus de documentArticle
Data publicació2010-11
Condicions d'accésAccés restringit per política de l'editorial
Abstract
We establish sharp energy estimates for some solutions, such as global minimizers, monotone solutions and saddle-shaped solutions, of the fractional nonlinear equation 1/2 in R n. Our energy estimates hold for every nonlinearity and are sharp since they are optimal for one-dimensional solutions, that is, for solutions depending only on one Euclidian variable.
As a consequence, in dimension , we deduce the one-dimensional symmetry of every global minimizer and of every monotone solution. This result is the analog of a conjecture of De Giorgi on one-dimensional symmetry for the classical equation in R n.
CitacióCabré, X.; Cinti, E. Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian. "Discrete and continuous dynamical systems. Series A", Novembre 2010, vol. 28, núm. 3, p. 1179-1206.
ISSN1078-0947
Versió de l'editorhttp://aimsciences.org/journals/pdfs.jsp?paperID=5131&mode=full
Fitxers | Descripció | Mida | Format | Visualitza |
---|---|---|---|---|
energy.pdf![]() | 333.1Kb | Accés restringit |
Llevat que s'hi indiqui el contrari, els continguts d'aquesta obra estan subjectes a la llicència de Creative Commons:
Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya