Show simple item record

dc.contributor.authorHernando Martín, María del Carmen
dc.contributor.authorHurtado Díaz, Fernando Alfredo
dc.contributor.authorNoy Serrano, Marcos
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.description.abstractLet Pn be a set of n = 2m points that are the vertices of a convex polygon, and let Mm be the graph having as vertices all the perfect matchings in the point set Pn whose edges are straight line segments and do not cross, and edges joining two perfect matchings M1 and M2 if M2 = M1 ¡ (a; b) ¡ (c; d) + (a; d) + (b; c) for some points a; b; c; d of Pn. We prove the following results about Mm: its diameter is m ¡ 1; it is bipartite for every m; the connectivity is equal to m ¡ 1; it has no Hamilton path for m odd, m > 3; and finally it has a Hamilton cycle for every m even, m>=4.
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.lcshGraph theory
dc.subject.otherPerfect matching
dc.subject.otherNon-crossing configuration
dc.subject.otherGray code
dc.titleGraphs of non-crossing perfect matchings
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
dc.subject.amsClassificació AMS::05 Combinatorics::05C Graph theory
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain