Kirchhoff indexes of a network
View/Open
kirchoffindexes.pdf (267,8Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/8290
Document typeArticle
Defense date2010-04-15
PublisherElsevier
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In this work we define the effective resistance between any pair of vertices with respect to a value λ ≥ 0 and a weight ω on the vertex set. This allows us to consider a generalization of the Kirchhoff Index of a finite network. It turns out that λ is the lowest eigenvalue of a suitable semi-definite positive Schrödinger operator and ω is the associated eigenfunction. We obtain the relation between the effective resistance, and hence between the Kirchhoff Index, with respect to λ and ω and the eigenvalues of the associated Schrödinger
operator. However, our main aim in this work is to get explicit expressions of the above parameters in terms of equilibrium measures
of the network. From these expressions, we derive a full generalization of Foster’s formulae that incorporate a positive probability of remaining in each vertex in every step of a random walk. Finally, we compute the effective resistances and the generalized Kirchhoff Index with respect to a λ and ω for some families of networks with
symmetries, specifically for weighted wagon-wheels and circular ladders.
CitationBendito, E. [et al.]. Kirchhoff indexes of a network. "Linear algebra and its applications", 15 Abril 2010, vol. 432, núm. 9, p. 2278-2292.
ISSN0024-3795
Files | Description | Size | Format | View |
---|---|---|---|---|
kirchoffindexes.pdf | 267,8Kb | Restricted access |