A simple proof of the spectral excess theorem for distance-regular graphs
View/Open
simpleproof.pdf (122,0Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/8284
Document typeArticle
Defense date2010-04-15
PublisherElsevier
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The spectral excess theorem provides a quasi-spectral characterization for a (regular) graph Γ with d+1 distinct eigenvalues to be distance-regular graph, in terms of the excess (number of vertices at distance d) of each of its vertices. The original approach, due to Fiol and Garriga in 1997, was obtained by using a local approach, so giving a characterization of the so-called pseudo-distance-regularity around a vertex. In this paper we present a new simple projection method based in a global point of view, and where the mean excess plays an essential role.
CitationFiol, M. A.; Gago, S.; Garriga, E. A simple proof of the spectral excess theorem for distance-regular graphs. "Linear algebra and its applications", 15 Abril 2010, vol. 432, núm. 9, p. 2418-2422.
ISSN0024-3795
Publisher versionhttp://linkinghub.elsevier.com/retrieve/pii/S0024379509003929
Files | Description | Size | Format | View |
---|---|---|---|---|
simpleproof.pdf | 122,0Kb | Restricted access |