Using annotations on Mechanical Turk to perform supervised polarity classification of Spanish customer comments
View/Open
1-s2.0-S0020025514000796-main.pdf (1,247Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/82570
Document typeArticle
Defense date2014-12-01
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
One of the major bottlenecks in the development of data-driven AI Systems is the cost of reliable human annotations. The recent advent of several crowdsourcing platforms such as Amazon’s Mechanical Turk, allowing requesters the access to affordable and rapid results of a global workforce, greatly facilitates the creation of massive training data. Most of the available studies on the effectiveness of crowdsourcing report on English data. We use Mechanical Turk annotations to train an Opinion Mining System to classify Spanish consumer comments. We design three different Human Intelligence Task (HIT) strategies and report high inter-annotator agreement between non-experts and expert annotators. We evaluate the advantages/drawbacks of each HIT design and show that, in our case, the use of non-expert annotations is a viable and cost-effective alternative to expert annotations.
CitationCosta-jussà, M. R., Grivolla, J., Mellebeek, B., Benavent, F., Codina, J., Codina, J., Banchs, R. Using annotations on Mechanical Turk to perform supervised polarity classification of Spanish customer comments. "Information sciences", 01 Desembre 2014, vol. 275, p. 400-412.
ISSN0020-0255
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0020025514000796
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
1-s2.0-S0020025514000796-main.pdf![]() | 1,247Mb | Restricted access |