Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.568 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using annotations on Mechanical Turk to perform supervised polarity classification of Spanish customer comments

Thumbnail
View/Open
1-s2.0-S0020025514000796-main.pdf (1,247Mb) (Restricted access)   Request copy 

Què és aquest botó?

Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:

  • Disposem del correu electrònic de l'autor
  • El document té una mida inferior a 20 Mb
  • Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Share:
 
 
10.1016/j.ins.2014.01.043
 
  View Usage Statistics
Cita com:
hdl:2117/82570

Show full item record
Ruiz Costa-Jussà, MartaMés informacióMés informació
Grivolla, Jens
Mellebeek, Bart
Benavent, Francesc
Codina, Joan
Codina, Joan
Banchs Martínez, Rafael Enrique
Document typeArticle
Defense date2014-12-01
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
One of the major bottlenecks in the development of data-driven AI Systems is the cost of reliable human annotations. The recent advent of several crowdsourcing platforms such as Amazon’s Mechanical Turk, allowing requesters the access to affordable and rapid results of a global workforce, greatly facilitates the creation of massive training data. Most of the available studies on the effectiveness of crowdsourcing report on English data. We use Mechanical Turk annotations to train an Opinion Mining System to classify Spanish consumer comments. We design three different Human Intelligence Task (HIT) strategies and report high inter-annotator agreement between non-experts and expert annotators. We evaluate the advantages/drawbacks of each HIT design and show that, in our case, the use of non-expert annotations is a viable and cost-effective alternative to expert annotations.
CitationCosta-jussà, M. R., Grivolla, J., Mellebeek, B., Benavent, F., Codina, J., Codina, J., Banchs, R. Using annotations on Mechanical Turk to perform supervised polarity classification of Spanish customer comments. "Information sciences", 01 Desembre 2014, vol. 275, p. 400-412. 
URIhttp://hdl.handle.net/2117/82570
DOI10.1016/j.ins.2014.01.043
ISSN0020-0255
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0020025514000796
Collections
  • Departament de Teoria del Senyal i Comunicacions - Articles de revista [2.406]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1-s2.0-S0020025514000796-main.pdfBlocked1,247MbPDFRestricted access

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Cookies policy
  • Inici de la pàgina