Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
66.619 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Facultat de Matemàtiques i Estadística
  • Grau en Matemàtiques (Pla 2009)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Facultat de Matemàtiques i Estadística
  • Grau en Matemàtiques (Pla 2009)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probabilistic data-driven models for the pushing problem

Thumbnail
View/Open
memoria.pdf (4,551Mb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/82279

Show full item record
Bauzà Villalonga, Maria
Tutor / directorAlberich Carramiñana, MariaMés informacióMés informacióMés informació; Rodríguez, Alberto
Document typeBachelor thesis
Date2016-01
Rights accessOpen Access
Attribution-NonCommercial-ShareAlike 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-ShareAlike 3.0 Spain
Abstract
Pushing actions are common mechanisms present in most human and industry manipulations. Nevertheless, finding a precise description for the motion of pushed objects is still an open problem. In this work, we will develop the first data-driven models that can describe the pushing motion taking into account its uncertainty. We will also explain how we collected a high-quality data set for pushing using real experiments that will be available online to motivate research in the pushing domain. A key challenge to describe pushing is understanding friction properly. In most situations, friction makes systems stochastic and introduces uncertainty in our predictions. Moreover, in robot applications, sensors can also add noise into our observations making our state-estimations uncertain. In consequence, our work will consider probabilistic algorithms such as Gaussian Processes to introduce for the first time the uncertainty of our system into the modeling of pushing.
SubjectsMathematical statistics, Estadística matemàtica
DegreeGRAU EN MATEMÀTIQUES (Pla 2009)
URIhttp://hdl.handle.net/2117/82279
Collections
  • Facultat de Matemàtiques i Estadística - Grau en Matemàtiques (Pla 2009) [318]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
memoria.pdf4,551MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina