A flexible fuzzy inductive reasoning approach for load modelling able to cope with missing data
Cita com:
hdl:2117/82054
Document typeConference report
Defense date2015
PublisherInstitute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Load forecasting in buildings and homes has been in recent years a task of increasing importance. New services and functionalities can be offered in the home environment due to this predictions, for instance, the detection of potential demand response programs and peaks that may increase the energy bill in a dynamic tariff framework. Almost real-time predictions are key for these services but missing values can dramatically affect the performance of the energy forecasting or distort the prediction significantly. Fuzzy Inductive Reasoning has been proven to model load consumptions with high accuracy compared to other typical AI and statistical techniques. Nevertheless, it has several limitations when missing data is presented in the training data of the model and during prediction. In this paper, we present an improved version of Fuzzy Inductive Reasoning, called Flexible FIR Prediction that can cope with missing information in the input pattern as well as, in situations where patterns are not found in the behaviour matrix. The new technique has been tested with real data from one building of the Universitat Politècnica de Catalunya (UPC) and the results show that Flexible FIR Prediction is able to generate good predictions with low errors (less than 15%) although missing data is present in the training and online prediction phases.
CitationJurado, S., Nebot, M., Múgica, F. A flexible fuzzy inductive reasoning approach for load modelling able to cope with missing data. A: International Conference on Simulation Tools and Techniques. "SIMUTools '15: proceedings of the 8th International Conference on Simulation Tools and Techniques". Atenas: Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST), 2015, p. 349-356.
ISBN978-1-63190-079-2
Publisher versionhttp://dl.acm.org/citation.cfm?id=2832238
Files | Description | Size | Format | View |
---|---|---|---|---|
ENERGYSIM 2015 manuscript FINAL.pdf | 670,6Kb | View/Open |