Show simple item record

dc.contributor.authorOrtego Martínez, María Isabel
dc.contributor.authorEgozcue Rubí, Juan José
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2016-01-25T12:11:29Z
dc.date.available2016-01-25T12:11:29Z
dc.date.issued2015
dc.identifier.citationOrtego, M.I., Egozcue, J. J. Bayesian estimation of the orthogonal decomposition of a contingency table. A: International Workshop on Compositional Data Analysis. "Proceedings of the 6th International Workshop on Compositional Data Analysis". L'Escala, Girona: 2015, p. 203-214.
dc.identifier.isbn978-84-8458-451-3
dc.identifier.urihttp://hdl.handle.net/2117/81949
dc.description.abstractContingency tables can be parametrized by probabilities of each cell in a multinomial sampling. These probabilities constitute the joint probability function of the two or more discrete random categorical variables. These probability tables have been previously studied from a compositional point of view. The compositional approach to the problem ensures coherence when analysing contingency sub-tables. The main results are: (1) given a probability table, the closest independent probability table is the product of their geometric marginals; (2) the probability table can be orthogonally decomposed into an independent table and an interaction table; (3) the departure of independence can be measured using simplicial deviance, which is the Aitchison square norm of the interaction table. In previous works, the analysis has been performed from a frequentist point of view. This contribution is aimed at providing a Bayesian assessment of the decomposition. The resulting model is log-linear one, which parameters are the centered log-ratio transformations of the geometric marginals and the interaction table. Using a Dirichlet prior distribution of multinomial probabilities, the posterior distribution of multinomial probabilities is again a Dirichlet distribution. Simulation of this posterior allows to study the distribution of marginal and interaction parameters, checking the independence of the observed contingency table and cell interactions. The results corresponding to a two-way contingency table example are presented.
dc.format.extent12 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Probabilitat
dc.subject.lcshCombinatorial probabilities
dc.titleBayesian estimation of the orthogonal decomposition of a contingency table
dc.typeConference report
dc.subject.lemacProbabilitats
dc.contributor.groupUniversitat Politècnica de Catalunya. COSDA-UPC - COmpositional and Spatial Data Analysis
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::65 Numerical analysis::65C Probabilistic methods, simulation and stochastic differential equations
dc.rights.accessOpen Access
local.identifier.drac15847431
dc.description.versionPostprint (published version)
local.citation.authorOrtego, M.I.; Egozcue, J. J.
local.citation.contributor6th International Workshop on Compositional Data Analysis
local.citation.pubplaceL'Escala, Girona
local.citation.publicationName6th International Workshop on Compositional Data Analysis (CoDaWork 2015), June 1-5, L'Escala (Girona), Spain
local.citation.startingPage203
local.citation.endingPage214


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain