Thixomixing as novel method for fabrication aluminum composite with carbon and alumina fibers
Cita com:
hdl:2117/81022
Document typeArticle
Defense date2015
PublisherWorld Academy of Science, Engineering and Technology (WASET)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
This study focuses on a novel method for dispersion
and distribution of reinforcement under high intensive shear stress to
produce metal composites. The polyacrylonitrile (PAN)-based short
carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under
high intensive shearing at mushy zone in semi-solid of A356 by a
novel method. The bundles and clusters were embedded by
infiltration of slurry into the clusters, thus leading to a uniform
microstructure. The fibers were embedded homogenously into the
aluminum around 576-580°C with around 46% of solid fraction.
Other experiments at 615°C and 568°C which are contained 0% and
90% solid respectively were not successful for dispersion and
infiltration of aluminum into bundles of Csf. The alumina fiber has
been cracked by high shearing load. The morphologies and
crystalline phase were evaluated by SEM and XRD. The adopted
thixo-process effectively improved the adherence and distribution of
Csf into Al that can be developed to produce various composites by
thixomixing. This study focuses on a novel method for dispersion
and distribution of reinforcement under high intensive shear stress to
produce metal composites. The polyacrylonitrile (PAN)-based short
carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under
high intensive shearing at mushy zone in semi-solid of A356 by a
novel method. The bundles and clusters were embedded by
infiltration of slurry into the clusters, thus leading to a uniform
microstructure. The fibers were embedded homogenously into the
aluminum around 576-580°C with around 46% of solid fraction.
Other experiments at 615°C and 568°C which are contained 0% and
90% solid respectively were not successful for dispersion and
infiltration of aluminum into bundles of Csf. The alumina fiber has
been cracked by high shearing load. The morphologies and
crystalline phase were evaluated by SEM and XRD. The adopted
thixo-process effectively improved the adherence and distribution of
Csf into Al that can be developed to produce various composites by
thixomixing.
CitationAkbarzadeh, E., Picas, J.A., Baile Puig, Maria Teresa. Thixomixing as novel method for fabrication aluminum composite with carbon and alumina fibers. "International Scholarly and Scientific Research and Innovation", 2015, vol. 9, núm. 8, p. 822-826.
ISSN1000-1645
Files | Description | Size | Format | View |
---|---|---|---|---|
Thixomixing-as- ... bon-and-Alumina-Fibers.pdf | 1020,Kb | View/Open | ||
Article-Materials letters Thixomixing.pdf | 1,462Mb | View/Open |