Show simple item record

dc.contributor.authorGarcia Olaverri, Alfredo Martin
dc.contributor.authorHurtado Díaz, Fernando Alfredo
dc.contributor.authorKorman Cozzetti, Matías
dc.contributor.authorMatos, Inés P.
dc.contributor.authorSaumell, Maria
dc.contributor.authorSilveira, Rodrigo Ignacio
dc.contributor.authorTejel Altarriba, Francisco Javier
dc.contributor.authorTóth, Csaba D.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2015-12-18T11:39:52Z
dc.date.available2017-03-31T00:30:47Z
dc.date.issued2015-03-01
dc.identifier.citationGarcia, A., Hurtado, F., Korman, M., Matos, I. P., Saumell, M., Silveira, R.I., Tejel, F., Tóth, C.D. Geometric biplane graphs II: graph augmentation. "Graphs and combinatorics", 01 Març 2015, vol. 31, núm. 2, p. 427-452.
dc.identifier.issn0911-0119
dc.identifier.urihttp://hdl.handle.net/2117/80900
dc.description.abstractWe study biplane graphs drawn on a finite point set in the plane in general position. This is the family of geometric graphs whose vertex set is and which can be decomposed into two plane graphs. We show that every sufficiently large point set admits a 5-connected biplane graph and that there are arbitrarily large point sets that do not admit any 6-connected biplane graph. Furthermore, we show that every plane graph (other than a wheel or a fan) can be augmented into a 4-connected biplane graph. However, there are arbitrarily large plane graphs that cannot be augmented to a 5-connected biplane graph by adding pairwise noncrossing edges.
dc.format.extent26 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria computacional
dc.subject.lcshGeometric group theory
dc.subject.otherGeometric graphs
dc.subject.otherBiplane graphs
dc.subject.otherk-connected graphs
dc.subject.otherGraph augmentation
dc.subject.otherCOMMON ANCESTORS
dc.subject.otherCONNECTIVITY
dc.titleGeometric biplane graphs II: graph augmentation
dc.typeArticle
dc.subject.lemacGeometria computacional
dc.contributor.groupUniversitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
dc.identifier.doi10.1007/s00373-015-1547-0
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::30 Functions of a complex variable::30C Geometric function theory
dc.rights.accessOpen Access
local.identifier.drac15608823
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MICINN/EUI/EURC-2011-4306
local.citation.authorGarcia, A.; Hurtado, F.; Korman, M.; Matos, I. P.; Saumell, M.; Silveira, R.I.; Tejel, F.; Tóth, C.D.
local.citation.publicationNameGraphs and combinatorics
local.citation.volume31
local.citation.number2
local.citation.startingPage427
local.citation.endingPage452


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record