dc.contributor.author | Garcia Olaverri, Alfredo Martin |
dc.contributor.author | Hurtado Díaz, Fernando Alfredo |
dc.contributor.author | Korman Cozzetti, Matías |
dc.contributor.author | Matos, Inés P. |
dc.contributor.author | Saumell, Maria |
dc.contributor.author | Silveira, Rodrigo Ignacio |
dc.contributor.author | Tejel Altarriba, Francisco Javier |
dc.contributor.author | Tóth, Csaba D. |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2015-12-18T11:39:52Z |
dc.date.available | 2017-03-31T00:30:47Z |
dc.date.issued | 2015-03-01 |
dc.identifier.citation | Garcia, A., Hurtado, F., Korman, M., Matos, I. P., Saumell, M., Silveira, R.I., Tejel, F., Tóth, C.D. Geometric biplane graphs II: graph augmentation. "Graphs and combinatorics", 01 Març 2015, vol. 31, núm. 2, p. 427-452. |
dc.identifier.issn | 0911-0119 |
dc.identifier.uri | http://hdl.handle.net/2117/80900 |
dc.description.abstract | We study biplane graphs drawn on a finite point set in the plane in general position. This is the family of geometric graphs whose vertex set is and which can be decomposed into two plane graphs. We show that every sufficiently large point set admits a 5-connected biplane graph and that there are arbitrarily large point sets that do not admit any 6-connected biplane graph. Furthermore, we show that every plane graph (other than a wheel or a fan) can be augmented into a 4-connected biplane graph. However, there are arbitrarily large plane graphs that cannot be augmented to a 5-connected biplane graph by adding pairwise noncrossing edges. |
dc.format.extent | 26 p. |
dc.language.iso | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria computacional |
dc.subject.lcsh | Geometric group theory |
dc.subject.other | Geometric graphs |
dc.subject.other | Biplane graphs |
dc.subject.other | k-connected graphs |
dc.subject.other | Graph augmentation |
dc.subject.other | COMMON ANCESTORS |
dc.subject.other | CONNECTIVITY |
dc.title | Geometric biplane graphs II: graph augmentation |
dc.type | Article |
dc.subject.lemac | Geometria computacional |
dc.contributor.group | Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta |
dc.identifier.doi | 10.1007/s00373-015-1547-0 |
dc.description.peerreviewed | Peer Reviewed |
dc.subject.ams | Classificació AMS::30 Functions of a complex variable::30C Geometric function theory |
dc.rights.access | Open Access |
local.identifier.drac | 15608823 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/MICINN/EUI/EURC-2011-4306 |
local.citation.author | Garcia, A.; Hurtado, F.; Korman, M.; Matos, I. P.; Saumell, M.; Silveira, R.I.; Tejel, F.; Tóth, C.D. |
local.citation.publicationName | Graphs and combinatorics |
local.citation.volume | 31 |
local.citation.number | 2 |
local.citation.startingPage | 427 |
local.citation.endingPage | 452 |