Mostra el registre d'ítem simple

dc.contributor.authorGustavsson, Johan
dc.contributor.authorAltankov, George Petrov
dc.contributor.authorErrachid, Abdelhamid
dc.contributor.authorSamitier Martí, Josep
dc.contributor.authorPlanell Estany, Josep Anton
dc.contributor.authorEngel López, Elisabeth
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2010-07-07T13:36:15Z
dc.date.available2010-07-07T13:36:15Z
dc.date.created2008-01
dc.date.issued2008-01
dc.identifier.citationGustavsson, J. [et al.]. Surface modifications of silicon nitride for cellular biosensor applications. "Journal of materials science. Materials in medicine", Gener 2008, vol. 19, núm. 4, p. 1839-1850.
dc.identifier.issn0957-4530
dc.identifier.urihttp://hdl.handle.net/2117/8056
dc.description.abstractThin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.
dc.format.extent12 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Biomaterials
dc.subject.lcshBiosensors--Materials
dc.subject.lcshThin films--Materials
dc.subject.lcshMolecular biology
dc.subject.lcshMonomolecular films
dc.subject.lcshSilicon compounds
dc.subject.lcshTissue engineering
dc.titleSurface modifications of silicon nitride for cellular biosensor applications
dc.typeArticle
dc.subject.lemacBiosensors
dc.subject.lemacPel·lícules fines
dc.subject.lemacBiologia molecular
dc.subject.lemacEnginyeria de teixits
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.identifier.doi10.1007/s10856-008-3384-7
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac790780
dc.description.versionPostprint (published version)
local.citation.authorGustavsson, J.; Altankov, G.; Errachid, A.; Samitier, J.; Planell, J.; Engel, E.
local.citation.publicationNameJournal of materials science. Materials in medicine
local.citation.volume19
local.citation.number4
local.citation.startingPage1839
local.citation.endingPage1850


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple