Mostra el registre d'ítem simple

dc.contributor.authorCasares, Laura
dc.contributor.authorVincent, Romaric
dc.contributor.authorZalvidea, Dobryna
dc.contributor.authorCampillo, Noelia
dc.contributor.authorNavajas, Daniel
dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.authorTrepat Guixer, Xavier
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2015-11-30T12:33:08Z
dc.date.available2015-11-30T12:33:08Z
dc.date.issued2015-03-01
dc.identifier.citationCasares, L., Vincent, R., Zalvidea, D., Campillo, N., Navajas, D., Arroyo, M., Trepat, X. Hydraulic fracture during epithelial stretching. "Nature materials", 01 Març 2015, vol. 14, núm. 3, p. 343-351.
dc.identifier.issn1476-1122
dc.identifier.urihttp://hdl.handle.net/2117/80033
dc.description.abstractThe origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.
dc.format.extent9 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes numèrics
dc.subject.lcshStrength of materials
dc.subject.otherHYDROSTATIC-PRESSURE
dc.subject.otherPHYSICAL FORCES
dc.subject.otherCELL-MIGRATION
dc.subject.otherLUNG INJURY
dc.subject.otherMECHANICS
dc.subject.otherGELS
dc.subject.otherADHESION
dc.subject.otherDISEASE
dc.subject.otherMORPHOGENESIS
dc.subject.otherVENTILATION
dc.titleHydraulic fracture during epithelial stretching
dc.typeArticle
dc.subject.lemacResistència de materials
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1038/NMAT4206
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74M Special kinds of problems
dc.relation.publisherversionhttps://www.nature.com/articles/nmat4206
dc.rights.accessOpen Access
local.identifier.drac15571800
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/242993/EU/Physical Forces Driving Collective Cell Migration: from Genes to Mechanism/GENESFORCEMOTION
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/240487/EU/Predictive models and simulations in nano- and biomolecular mechanics: a multiscale approach/PREDMODSIM
local.citation.authorCasares, L.; Vincent, R.; Zalvidea, D.; Campillo, N.; Navajas, D.; Arroyo, M.; Trepat, X.
local.citation.publicationNameNature materials
local.citation.volume14
local.citation.number3
local.citation.startingPage343
local.citation.endingPage351
dc.identifier.pmid25664452


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple