Show simple item record

dc.contributor.authorCasares, Laura
dc.contributor.authorElosegui Artola, Alberto
dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.authorNavajas, Daniel
dc.contributor.authorRoca Cusachs, Pere
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2015-11-30T12:25:19Z
dc.date.available2015-11-30T12:25:19Z
dc.date.issued2015-06-01
dc.identifier.citationCasares, L., Elosegui, A., Arroyo, M., Navajas, D., Roca, P. Physical principles of membrane remodelling during cell mechanoadaptation. "Nature communications", 01 Juny 2015, vol. 6, núm. 7292, p. 1-11.
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/2117/80032
dc.description.abstractBiological processes in any physiological environment involve changes in cell shape, which must be accommodated by their physical envelope-the bilayer membrane. However, the fundamental biophysical principles by which the cell membrane allows for and responds to shape changes remain unclear. Here we show that the 3D remodelling of the membrane in response to a broad diversity of physiological perturbations can be explained by a purely mechanical process. This process is passive, local, almost instantaneous, before any active remodelling and generates different types of membrane invaginations that can repeatedly store and release large fractions of the cell membrane. We further demonstrate that the shape of those invaginations is determined by the minimum elastic and adhesive energy required to store both membrane area and liquid volume at the cell-substrate interface. Once formed, cells reabsorb the invaginations through an active process with duration of the order of minutes.
dc.format.extent11 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshBiomathematics
dc.subject.otherALVEOLAR EPITHELIAL-CELLS
dc.subject.otherSURFACE-AREA REGULATION
dc.subject.otherLIVING CELLS
dc.subject.otherTENSION
dc.subject.otherDYNAMICS
dc.subject.otherSHAPE
dc.subject.otherEXOCYTOSIS
dc.subject.otherMIGRATION
dc.subject.otherNEURONS
dc.subject.otherSTRESS
dc.titlePhysical principles of membrane remodelling during cell mechanoadaptation
dc.typeArticle
dc.subject.lemacBiologia -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1038/ncomms8292
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::92 Biology and other natural sciences::92B Mathematical biology in general
dc.rights.accessOpen Access
drac.iddocument16827726
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/242993/EU/Physical Forces Driving Collective Cell Migration: from Genes to Mechanism/GENESFORCEMOTION
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/240487/EU/Predictive models and simulations in nano- and biomolecular mechanics: a multiscale approach/PREDMODSIM
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/303848/EU/Mechanical pathways in cells: from molecular mechanisms to cell function/MECPATH
upcommons.citation.authorCasares, L., Elosegui, A., Arroyo, M., Navajas, D., Roca, P.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameNature communications
upcommons.citation.volume6
upcommons.citation.number7292
upcommons.citation.startingPage1
upcommons.citation.endingPage11
dc.identifier.pmid26073653


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain