L’activitat del grup es centra fonamentalment en el camp de les resines epoxi amb propietats millorades. Les millores pretenen incidir en certs problemes que presenten aquests materials com per exemple la seva baixa degradabilitat que impossibilita la recuperació dels substrats en els recobriments, la contracció i les tensions generades durant el curat i l’elevada fragilitat dels materials un cop reticulats. Actualment el grup està treballant en la preparació i caracterització de nous termoestables obtinguts a partir de mescles de resines epoxídiques, amb i sense càrregues inorgàniques i polímers dendrítics, comercials o sintetitzats per nosaltres, amb diferents estructures, dissenyades per tal d’aconseguir les millores esmentades, especialment l’augment de la tenacitat. Darrerament el grup està iniciant treballs amb sistemes epoxídics amb memòria de forma i amb curats B-stage, especialment indicats per afavorir l’emmagatzament i manipulació de les formulacions.

The objective of the group is to study the thermal, physical and chemical properties of materials in relation to thermodynamics and thermal analysis techniques. During the last few years, the group has studied the calorimetric, thermomechanical and dielectric properties of the following materials: polymer concretes, thermosetting resins, both pure and in a composite matrix, polymer blends, interpenetrating polymer networks, thermosetting paints, and biodegradable polyolefins. The knowledge acquired by the group and the specialised use of different instrumental techniques allow it to work both on the characterisation of materials as well as on their transformation processes. These activities include the study of the following: structural relaxation, processes related to phase transformation and phase separation, processes related to durability and thermal stability, the kinetics of chemical reactions (polymerisation, dynamic and isothermal curing, thermal and thermo-oxidative degradation) and physical ageing. They also include the determination of the following properties: a) thermal properties (specific heats, thermal expansion coefficients, phase change enthalpies, heats of reaction and glass transition temperatures), b) mechanical properties (expansion coefficient, storage and loss modulus and loss factor), c) dielectric properties (dielectric permittivity and loss factor) and d) thermo-optical properties. The techniques used to perform these activities are the following: a) differential scanning calorimetry, both conventional and temperature-modulated, and tensional calorimetry, b) mechanical analysis (dynamic mechanical thermal analysis, thermomechanical analysis and creep), c) dielectric analysis, d) thermogravimetric analysis, e) optical thermal microscopy and e) infra-red spectroscopy with thermal control. At the present time, the group is working on the thermal and ultraviolet radiation curing of polymers and thermosetting resins. The study includes the optimisation of photocuring and its application in obtaining thermosets that have low contraction, as well as the synthesis and characterisation of nanocomposites of epoxy resins and laminar silicates. The group is part of the Thermal Energy Research Group, which is considered a consolidated research group by the Generalitat of Catalonia¿s General Directorate of Research (DGR). The academic objectives of the group are concerned with the teaching of thermodynamics and related subjects, such as thermal analysis, physical chemistry, the study of energy transformations and systems of energy storage, among others.

The objective of the group is to study the thermal, physical and chemical properties of materials in relation to thermodynamics and thermal analysis techniques. During the last few years, the group has studied the calorimetric, thermomechanical and dielectric properties of the following materials: polymer concretes, thermosetting resins, both pure and in a composite matrix, polymer blends, interpenetrating polymer networks, thermosetting paints, and biodegradable polyolefins. The knowledge acquired by the group and the specialised use of different instrumental techniques allow it to work both on the characterisation of materials as well as on their transformation processes. These activities include the study of the following: structural relaxation, processes related to phase transformation and phase separation, processes related to durability and thermal stability, the kinetics of chemical reactions (polymerisation, dynamic and isothermal curing, thermal and thermo-oxidative degradation) and physical ageing. They also include the determination of the following properties: a) thermal properties (specific heats, thermal expansion coefficients, phase change enthalpies, heats of reaction and glass transition temperatures), b) mechanical properties (expansion coefficient, storage and loss modulus and loss factor), c) dielectric properties (dielectric permittivity and loss factor) and d) thermo-optical properties. The techniques used to perform these activities are the following: a) differential scanning calorimetry, both conventional and temperature-modulated, and tensional calorimetry, b) mechanical analysis (dynamic mechanical thermal analysis, thermomechanical analysis and creep), c) dielectric analysis, d) thermogravimetric analysis, e) optical thermal microscopy and e) infra-red spectroscopy with thermal control. At the present time, the group is working on the thermal and ultraviolet radiation curing of polymers and thermosetting resins. The study includes the optimisation of photocuring and its application in obtaining thermosets that have low contraction, as well as the synthesis and characterisation of nanocomposites of epoxy resins and laminar silicates. The group is part of the Thermal Energy Research Group, which is considered a consolidated research group by the Generalitat of Catalonia¿s General Directorate of Research (DGR). The academic objectives of the group are concerned with the teaching of thermodynamics and related subjects, such as thermal analysis, physical chemistry, the study of energy transformations and systems of energy storage, among others.

Recent Submissions

View more