Thin shell analysis from scattered points with maximum-entropy approximants
View/Open
Cita com:
hdl:2117/79445
Document typeArticle
Defense date2011-02
PublisherJohn Wiley & Sons
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We present a method to process embedded smooth manifolds using sets of points alone. This method avoids any global parameterization and hence is applicable to surfaces of any genus. It combines three ingredients: (1) the automatic detection of the local geometric structure of the manifold by statistical learning methods; (2) the local parameterization of the surface using smooth meshfree (here maximum-entropy) approximants; and (3) patching together the local representations by means of a partition of unity. Mesh-based methods
can deal with surfaces of complex topology, since they rely on the element-level parameterizations, but cannot handle high-dimensional manifolds, whereas previous meshfree methods for thin shells consider a global parametric domain, which seriously limits the kinds of surfaces that can be treated. We present the implementation of the method in the context of Kirchhoff–Love shells, but it is applicable to other calculations on manifolds in any dimension. With the smooth approximants, this fourth-order partial differential equation is treated directly. We show the good performance of the method on the basis of the classical obstacle course. Additional calculations exemplify the flexibility of the proposed approach in treating surfaces of complex topology and geometry.
Description
This is the accepted version of the following article: [Millán, D., Rosolen, A. and Arroyo, M. (2011), Thin shell analysis from scattered points with maximum-entropy approximants. Int. J. Numer. Meth. Engng., 85: 723–751. doi:10.1002/nme.2992], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nme.2992/abstract
CitationMillán, D., Rosolen, A.M., Arroyo, M. Thin shell analysis from scattered points with maximum-entropy approximants. "International journal for numerical methods in engineering", Febrer 2011, vol. 85, núm. 6, p. 723-751.
ISSN0029-5981
Publisher versionhttp://onlinelibrary.wiley.com/doi/10.1002/nme.2992/abstract
Files | Description | Size | Format | View |
---|---|---|---|---|
2011-IJNME-MRA blanc.pdf | 4,260Mb | View/Open |