Mostra el registre d'ítem simple

dc.contributor.authorAtserias, Albert
dc.contributor.authorBalcázar Navarro, José Luis
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2015-11-11T12:38:12Z
dc.date.available2015-11-11T12:38:12Z
dc.date.issued2015
dc.identifier.citationAtserias, A., Balcázar, J. L. Entailment among probabilistic implications. A: Annual ACM/IEEE Symposium on Logic in Computer Science. "2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science: LICS 2015: 6–10 July 2015, Kyoto, Japan: proceedings". Kyoto: Institute of Electrical and Electronics Engineers (IEEE), 2015, p. 621-632.
dc.identifier.isbn978-1-4799-8875-4
dc.identifier.urihttp://hdl.handle.net/2117/79017
dc.description.abstractWe study a natural variant of the implicational fragment of propositional logic. Its formulas are pairs of conjunctions of positive literals, related together by an implicational-like connective, the semantics of this sort of implication is defined in terms of a threshold on a conditional probability of the consequent, given the antecedent: we are dealing with what the data analysis community calls confidence of partial implications or association rules. Existing studies of redundancy among these partial implications have characterized so far only entailment from one premise and entailment from two premises. By exploiting a previously noted alternative view of this entailment in terms of linear programming duality, we characterize exactly the cases of entailment from arbitrary numbers of premises. As a result, we obtain decision algorithms of better complexity, additionally, for each potential case of entailment, we identify a critical confidence threshold and show that it is, actually, intrinsic to each set of premises and antecedent of the conclusion.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Informàtica::Informàtica teòrica
dc.subject.lcshLinear programming
dc.subject.lcshData mining
dc.subject.otherPartial implication
dc.subject.otherConditional probability
dc.subject.otherConfidence threshold
dc.titleEntailment among probabilistic implications
dc.typeConference report
dc.subject.lemacProgramació lineal
dc.subject.lemacMineria de dades
dc.contributor.groupUniversitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals
dc.contributor.groupUniversitat Politècnica de Catalunya. LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge
dc.identifier.doi10.1109/LICS.2015.63
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7174917
dc.rights.accessOpen Access
drac.iddocument17230837
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorAtserias, A., Balcázar, J. L.
upcommons.citation.contributorAnnual ACM/IEEE Symposium on Logic in Computer Science
upcommons.citation.pubplaceKyoto
upcommons.citation.publishedtrue
upcommons.citation.publicationName2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science: LICS 2015: 6–10 July 2015, Kyoto, Japan: proceedings
upcommons.citation.startingPage621
upcommons.citation.endingPage632


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets