Mostrar el registro sencillo del ítem

dc.contributor.authorLevinsen, Jesper
dc.contributor.authorMassignan, Pietro
dc.contributor.authorBruun, Georg M.
dc.contributor.authorParish, Meera M.
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Ciències Fotòniques
dc.description.abstractA major challenge in modern physics is to accurately describe strongly interacting quantum many-body systems. One-dimensional systems provide fundamental insights because they are often amenable to exact methods. However, no exact solution is known for the experimentally relevant case of external confinement. We propose a powerful ansatz for the one-dimensional Fermi gas in a harmonic potential near the limit of infinite short-range repulsion. For the case of a single impurity in a Fermi sea, we show that our ansatz is indistinguishable from numerically exact results in both the few- and many-body limits. We furthermore derive an effective Heisenberg spin-chain model corresponding to our ansatz, valid for any spin-mixture, within which we obtain the impurity eigenstates analytically. In particular, the classical Pascal’s triangle emerges in the expression for the ground-state wave function. As well as providing an important benchmark for strongly correlated physics, our results are relevant for emerging quantum technologies, where a precise knowledge of one-dimensional quantum states is paramount.
dc.format.extent11 p.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshQuantum optics
dc.subject.otherFermi gas
dc.titleStrong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential
dc.subject.lemacÒptica quàntica
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
upcommons.citation.publicationNameScience Advances

Ficheros en el ítem


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Salvo que se indique lo contrario, los contenidos de esta obra estan sujetos a la licencia de Creative Commons: Reconocimiento-NoComercial-SinObraDerivada 3.0 España