Show simple item record

dc.contributor.authorGiorgiani, Giorgio
dc.contributor.authorFernandez Mendez, Sonia
dc.contributor.authorHuerta, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.identifier.citationGiorgiani, G., Fernandez, S., Huerta, A. Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems. "International journal for numerical methods in fluids", 2013, vol. 72, núm. 12, p. 1244-1262.
dc.description.abstractA p-adaptive hybridizable discontinuous Galerkin method for the solution of wave problems is presented in a challenging engineering problem. Moreover, its performance is compared with a high-order continuous Galerkin. The hybridization technique allows to reduce the coupled degrees of freedom to only those on the mesh element boundaries, whereas the particular choice of the numerical fluxes opens the path to a superconvergent postprocessed solution. This superconvergent postprocessed solution is used to construct a simple and inexpensive error estimator. The error estimator is employed to obtain solutions with the prescribed accuracy in the area (or areas) of interest and also drives a proposed iterative mesh adaptation procedure. The proposed method is applied to a nonhomogeneous scattering problem in an unbounded domain. This is a challenging problem because, on the one hand, for high frequencies, numerical difficulties are an important issue because of the loss of the ellipticity and the oscillatory behavior of the solution. And on the other hand, it is applied to real harbor agitation problems. That is, the mild slope equation in frequency domain (Helmholtz equation with nonconstant coefficients) is solved on real geometries with the corresponding perfectly matched layer to damp the diffracted waves. The performance of the method is studied on two practical examples. The adaptive hybridizable discontinuous Galerkin method exhibits better efficiency compared with a high-order continuous Galerkin method using static condensation of the interior nodes.
dc.format.extent19 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta
dc.subject.lcshGalerkin methods
dc.subject.otherHelmholtz equation
dc.subject.otherdiscontinuous Galerkin method
dc.subject.othererror estimation
dc.subject.otherhigh-order approximations
dc.titleHybridizable discontinuous Galerkin p-adaptivity for wave propagation problems
dc.subject.lemacGalerkin, Mètodes de
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems
dc.rights.accessOpen Access
dc.description.versionPostprint (author’s final draft)
upcommons.citation.authorGiorgiani, G., Fernandez, S., Huerta, A.
upcommons.citation.publicationNameInternational journal for numerical methods in fluids
 Find Full text

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain