Show simple item record

dc.contributor.authorTielrooij, K. J.
dc.contributor.authorOrona, L.
dc.contributor.authorFerrier, A.
dc.contributor.authorBadioli, M.
dc.contributor.authorNavickaite, G.
dc.contributor.authorCoop, S.
dc.contributor.authorNanot, S.
dc.contributor.authorKalinic, B.
dc.contributor.authorCesca, T.
dc.contributor.authorGaudreau, L.
dc.contributor.authorMa, Q.
dc.contributor.authorCenteno, A.
dc.contributor.authorPesquera, A.
dc.contributor.authorZurutuza, A.
dc.contributor.authorRiedmatten, H. de
dc.contributor.authorGoldner, P.
dc.contributor.authorGarcía de Abajo, Francisco Javier
dc.contributor.authorJarillo-Herrero, P.
dc.contributor.authorKoppens, Frank H. L.
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Ciències Fotòniques
dc.description.abstractControlling the energy flow processes and the associated energy relaxation rates of a light emitter is of fundamental interest and has many applications in the fields of quantum optics, photovoltaics, photodetection, biosensing and light emission. Advanced dielectric, semiconductor and metallic systems have been developed to tailor the interaction between an emitter and its environment. However, active control of the energy flow from an emitter into optical, electronic or plasmonic excitations has remained challenging. Here, we demonstrate in situ electrical control of the relaxation pathways of excited erbium ions, which emit light at the technologically relevant telecommunication wavelength of 1.5 μm. By placing the erbium at a few nanometres distance from graphene, we modify the relaxation rate by more than a factor of three, and control whether the emitter decays into electron–hole pairs, emitted photons or graphene near-infrared plasmons, confined to <15 nm from the graphene sheet. These capabilities to dictate optical energy transfer processes through electrical control of the local density of optical states constitute a new paradigm for active (quantum) photonics and can be applied using any combination of light emitters and two-dimensional materials.
dc.publisherNature Publishing Group
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Física
dc.titleElectrical control of optical emitter relaxation pathways enabled by graphene
dc.rights.accessOpen Access
dc.description.versionPostprint (author’s final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/307806/EU/Tunable light tightly bound to a single sheet of carbon atoms:graphene as a novel platform for nano-optoelectronics/CARBONLIGHT
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/294056/EU/Graphene Nano-Photonics/GRANOP
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/604391/EU/Graphene-Based Revolutions in ICT And Beyond/GRAPHENE
upcommons.citation.publicationNameNature Physics

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain