Show simple item record

dc.contributor.authorTielrooij, K. J.
dc.contributor.authorOrona, L.
dc.contributor.authorFerrier, A.
dc.contributor.authorBadioli, M.
dc.contributor.authorNavickaite, G.
dc.contributor.authorCoop, S.
dc.contributor.authorNanot, S.
dc.contributor.authorKalinic, B.
dc.contributor.authorCesca, T.
dc.contributor.authorGaudreau, L.
dc.contributor.authorMa, Q.
dc.contributor.authorCenteno, A.
dc.contributor.authorPesquera, A.
dc.contributor.authorZurutuza, A.
dc.contributor.authorRiedmatten, H. de
dc.contributor.authorGoldner, P.
dc.contributor.authorGarcía de Abajo, Francisco Javier
dc.contributor.authorJarillo-Herrero, P.
dc.contributor.authorKoppens, Frank H. L.
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Ciències Fotòniques
dc.date.accessioned2015-11-02T12:16:31Z
dc.date.available2015-11-02T12:16:31Z
dc.date.issued2015-01-19
dc.identifier.issn1745-2473
dc.identifier.urihttp://hdl.handle.net/2117/78627
dc.description.abstractControlling the energy flow processes and the associated energy relaxation rates of a light emitter is of fundamental interest and has many applications in the fields of quantum optics, photovoltaics, photodetection, biosensing and light emission. Advanced dielectric, semiconductor and metallic systems have been developed to tailor the interaction between an emitter and its environment. However, active control of the energy flow from an emitter into optical, electronic or plasmonic excitations has remained challenging. Here, we demonstrate in situ electrical control of the relaxation pathways of excited erbium ions, which emit light at the technologically relevant telecommunication wavelength of 1.5 μm. By placing the erbium at a few nanometres distance from graphene, we modify the relaxation rate by more than a factor of three, and control whether the emitter decays into electron–hole pairs, emitted photons or graphene near-infrared plasmons, confined to <15 nm from the graphene sheet. These capabilities to dictate optical energy transfer processes through electrical control of the local density of optical states constitute a new paradigm for active (quantum) photonics and can be applied using any combination of light emitters and two-dimensional materials.
dc.language.isoeng
dc.publisherNature Publishing Group
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshGraphene
dc.subject.othergraphene
dc.titleElectrical control of optical emitter relaxation pathways enabled by graphene
dc.typeArticle
dc.subject.lemacGrafè
dc.relation.publisherversionhttp://www.nature.com/nphys/journal/v11/n3/full/nphys3204.html
dc.rights.accessOpen Access
dc.description.versionPostprint (author’s final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/307806/EU/Tunable light tightly bound to a single sheet of carbon atoms:graphene as a novel platform for nano-optoelectronics/CARBONLIGHT
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/294056/EU/Graphene Nano-Photonics/GRANOP
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/604391/EU/Graphene-Based Revolutions in ICT And Beyond/GRAPHENE
upcommons.citation.publicationNameNature Physics
upcommons.citation.volume11
upcommons.citation.startingPage281
upcommons.citation.endingPage287


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain