Show simple item record

dc.contributor.authorWoessner, Achim
dc.contributor.authorLundeberg, Mark B.
dc.contributor.authorGao, Yuanda
dc.contributor.authorPrincipi, Alessandro
dc.contributor.authorAlonso-González, Pablo
dc.contributor.authorCarrega, Matteo
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorVignale, Giovanni
dc.contributor.authorPolini, Marco
dc.contributor.authorHone, James
dc.contributor.authorHillenbrand, Rainer
dc.contributor.authorKoppens, Frank H.L.
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Ciències Fotòniques
dc.date.accessioned2015-10-30T11:19:54Z
dc.date.available2015-10-30T11:19:54Z
dc.date.issued2014-12-22
dc.identifier.urihttp://hdl.handle.net/2117/78559
dc.description.abstractGraphene plasmons were predicted to possess simultaneous ultrastrong field confinement and very low damping, enabling new classes of devices for deep-subwavelength metamaterials, single-photon nonlinearities, extraordinarily strong light–matter interactions and nano-optoelectronic switches. Although all of these great prospects require low damping, thus far strong plasmon damping has been observed, with both impurity scattering and many-body effects in graphene proposed as possible explanations. With the advent of van der Waals heterostructures, new methods have been developed to integrate graphene with other atomically flat materials. In this Article we exploit near-field microscopy to image propagating plasmons in high-quality graphene encapsulated between two films of hexagonal ​boron nitride (h-BN). We determine the dispersion and plasmon damping in real space. We find unprecedentedly low plasmon damping combined with strong field confinement and confirm the high uniformity of this plasmonic medium. The main damping channels are attributed to intrinsic thermal phonons in the graphene and dielectric losses in the h-BN. The observation and in-depth understanding of low plasmon damping is the key to the development of graphene nanophotonic and nano-optoelectronic devices.
dc.format.extent5 p.
dc.language.isoeng
dc.publisherNature Publishing Group
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshPlasmons (Physics)
dc.subject.otherplasmons
dc.titleHighly confined low-loss plasmons in graphene–boron nitride heterostructures
dc.typeArticle
dc.subject.lemacPlasmons (Física)
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.nature.com/nmat/journal/v14/n4/full/nmat4169.html
dc.rights.accessOpen Access
dc.description.versionPostprint (author’s final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/294056/EU/Graphene Nano-Photonics/GRANOP
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/307806/EU/Tunable light tightly bound to a single sheet of carbon atoms:graphene as a novel platform for nano-optoelectronics/CARBONLIGHT
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/604391/EU/Graphene-Based Revolutions in ICT And Beyond/GRAPHENE
upcommons.citation.publicationNameNature Materials
upcommons.citation.volume14
upcommons.citation.startingPage421
upcommons.citation.endingPage425


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain