Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels

Ver/Abrir
Cita com:
hdl:2117/78405
Tipo de documentoArtículo
Fecha de publicación2015-04
Condiciones de accesoAcceso abierto
Salvo que se indique lo contrario, los contenidos
de esta obra estan sujetos a la licencia de Creative Commons
:
Reconocimiento-NoComercial-SinObraDerivada 3.0 España
Resumen
The high-temperature deformation behaviors of low and medium carbon steels with respectively 0.06 and 0.5 wt% C were investigated under strain rate and temperature ranges of 10-4–10-1 s-1 and of 900–1100 °C. Three types of dynamic recrystallization (DRX) flow behaviors were identified, namely single peak, multiple transient steady state (MTSS), and cyclic behaviors. The normalized critical stress (and strain) for the low and medium carbon steels were about 0.846 (0.531) and 0.879 (0.537), respectively. For both steels, the apparent deformation activation energy and the power of the hyperbolic sine law were found to be near the lattice self-diffusion activation energy of austenite (270 kJ/mol) and 4.5, respectively. As a result, it was concluded that the flow stress of plain carbon steels in hot deformation is mainly controlled by dislocation climb during their intragranular motion, and based on physically-based constitutive analysis, it was found that carbon has a slight effect on the hot flow stress of plain carbon steels. The significance of the approach used in this work was shown to be its reliance on the theoretical analysis based on the deformation mechanisms, which makes the comparison more reliable.
CitaciónSaadatkia, S., Mirzadeh, H., Cabrera, J. Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. "Materials science and engineering A. Structural materials properties microstructure and processing", Abril 2015, vol. 636, p. 196-202.
ISSN0921-5093
Versión del editorhttp://www.sciencedirect.com/science/article/pii/S0921509315003640
Ficheros | Descripción | Tamaño | Formato | Ver |
---|---|---|---|---|
1-s2.0-S0921509315003640-main.pdf | proofprint | 1,574Mb | Ver/Abrir |