Show simple item record

dc.contributor.authorGarcía Rudolph, Alejandro
dc.contributor.authorGibert, Karina
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.date.accessioned2015-10-22T13:05:15Z
dc.date.issued2015-01-15
dc.identifier.citationGarcía-Rudolph, A., Gibert, Karina. A data mining approach for Visual and Analytic identification of neurorehabilitation ranges in traumatic brain injury cognitive rehabilitation. "Abstract and applied analysis", 15 Gener 2015, p. 1-14.
dc.identifier.issn1085-3375
dc.identifier.urihttp://hdl.handle.net/2117/78144
dc.description.abstractTraumatic brain injury (TBI) is a critical public health and socioeconomic problem throughout the world. Cognitive rehabilitation (CR) has become the treatment of choice for cognitive impairments after TBI. It consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions. One important focus for CR professionals is the number of repetitions and the type of task performed throughout treatment leading to functional recovery. However, very little research is available that quantifies the amount and type of practice. The Neurorehabilitation Range (NRR) and the Sectorized and Annotated Plane (SAP) have been introduced as a means of identifying formal operational models in order to provide therapists with decision support information for assigning the most appropriate CR plan. In this paper we present a novel methodology based on combining SAP and NRR to solve what we call the Neurorehabilitation Range Maximal Regions (NRRMR) problem and to generate analytical and visual tools enabling the automatic identification of NRR. A new SAP representation is introduced and applied to overcome the drawbacks identified with existing methods. The results obtained show patterns of response to treatment that might lead to reconsideration of some of the current clinical hypotheses.
dc.format.extent14 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshBiomathematics
dc.titleA data mining approach for Visual and Analytic identification of neurorehabilitation ranges in traumatic brain injury cognitive rehabilitation
dc.typeArticle
dc.subject.lemacBiologia -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
dc.identifier.doi10.1155/2015/823562
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::92 Biology and other natural sciences::92B Mathematical biology in general
dc.relation.publisherversionhttp://www.hindawi.com/journals/aaa/aa/823562/ref/
dc.rights.accessRestricted access - author's decision
local.identifier.drac15610736
dc.description.versionPostprint (author’s final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/610359/EU/PERsonalised ICT Supported Service for Independent Living and Active Ageing/PERSSILAA
dc.date.lift10000-01-01
local.citation.authorGarcía-Rudolph, A.; Gibert, Karina
local.citation.publicationNameAbstract and applied analysis
local.citation.startingPage1
local.citation.endingPage14


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain