UPCommons està en procés de migració del dia 10 fins al 14 Juliol. L’autentificació està deshabilitada per evitar canvis durant aquesta migració.
Neural network model for surface roughness in semifinish honing

View/Open
Cita com:
hdl:2117/77552
Document typeConference report
Defense date2015
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In the present work, neural networks were used for modelling average roughness Ra as a function of
process parameters: grain size, density of abrasive, pressure of honing stones on the workpiece’s
surface, linear speed and tangential speed. For doing this, first experimental semifinish honing tests
were performed. Then results were used for selecting best configuration of the neural network, taking
into account either one or two hidden layers. In addition, neural models were compared to regression
models.
CitationSivatte, M., Llanas, F., Buj, I., Vivancos, J. Neural network model for surface roughness in semifinish honing. A: International Research / Expert Conference. "Proceedings of the 19th International Research/Expert Conference ”Trends in the Development of Machinery and Associated Technology” TMT 2015". Barcelona: 2015, p. 5-8.
ISBN1840-4944
Collections
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Ponències/Comunicacions de congressos [1.572]
- Departament d'Enginyeria mecànica - Ponències/Comunicacions de congressos [517]
- TECNOFAB - Grup de Recerca en Tecnologies de Fabricació - Ponències/Comunicacions de congressos [85]
- CETpD -Centre d'Estudis Tecnològics per a l'Atenció a la Dependència i la Vida Autònoma - Ponències/Comunicacions de congressos [31]
Files | Description | Size | Format | View |
---|---|---|---|---|
TMT_2015_002.pdf | 62,24Kb | View/Open |