Show simple item record

dc.contributor.authorHuespe, Alfredo Edmundo
dc.contributor.authorOliver Olivella, Xavier
dc.contributor.authorMora, Diego Fernando
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
dc.date.accessioned2015-09-25T13:02:52Z
dc.date.available2015-09-25T13:02:52Z
dc.date.created2013-12
dc.date.issued2013-12
dc.identifier.citationHuespe, A., Oliver, J., Mora, D. Computational modeling of high-performance steel fiber reinforced concrete using a micromorphic approach. "Computational Mechanics", Desembre 2013, vol. 52, núm. 6, p. 1243-1264.
dc.identifier.issn0178-7675
dc.identifier.urihttp://hdl.handle.net/2117/77099
dc.descriptionThe final publication is available at Springer via http://dx.doi.org/10.1007/s00466-013-0873-4
dc.description.abstractA finite element methodology for simulating the failure of high performance fiber reinforced concrete composites (HPFRC), with arbitrarily oriented short fibers, is presented. The composite material model is based on a micromorphic approach. Using the framework provided by this theory, the body configuration space is described through two kinematical descriptors. At the structural level, the displacement field represents the standard kinematical descriptor. Additionally, a morphological kinematical descriptor, the micromorphic field, is introduced. It describes the fiber–matrix relative displacement, or slipping mechanism of the bond, observed at the mesoscale level. In the first part of this paper, we summarize the model formulation of the micromorphic approach presented in a previous work by the authors. In the second part, and as the main contribution of the paper, we address specific issues related to the numerical aspects involved in the computational implementation of the model. The developed numerical procedure is based on a mixed finite element technique. The number of dofs per node changes according with the number of fiber bundles simulated in the composite. Then, a specific solution scheme is proposed to solve the variable number of unknowns in the discrete model. The HPFRC composite model takes into account the important effects produced by concrete fracture. A procedure for simulating quasi-brittle fracture is introduced into the model and is described in the paper. The present numerical methodology is assessed by simulating a selected set of experimental tests which proves its viability and accuracy to capture a number of mechanical phenomenon interacting at the macro- and mesoscale and leading to failure of HPFRC composites.
dc.format.extent22 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Materials i estructures::Materials i estructures de formigó
dc.subject.lcshFiber-reinforced concrete
dc.subject.lcshConcrete--Mathematical models
dc.subject.otherHigh performance fiber reinforced concrete (HPFRC)
dc.subject.otherFailure of HPFRC
dc.subject.otherShort reinforcement fibers
dc.subject.otherMicromorphic materials Material multifield theory
dc.subject.otherMorphological descriptors
dc.subject.otherCOMP-DES-MAT Project
dc.subject.otherCOMPDESMAT Project
dc.titleComputational modeling of high-performance steel fiber reinforced concrete using a micromorphic approach
dc.typeArticle
dc.subject.lemacConstrucció en formigó armat amb fibres
dc.subject.lemacFormigó -- Mètodes numèrics
dc.contributor.groupUniversitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria
dc.contributor.groupUniversitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
dc.identifier.doi10.1007/s00466-013-0873-4
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://link.springer.com/article/10.1007/s00466-013-0873-4
dc.rights.accessOpen Access
local.identifier.drac12850284
dc.description.versionPostprint (author’s final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/320815/EU/Advanced tools for computational design of engineering materials/COMP-DES-MAT
local.citation.authorHuespe, A.; Oliver, J.; Mora, D.
local.citation.publicationNameComputational Mechanics
local.citation.volume52
local.citation.number6
local.citation.startingPage1243
local.citation.endingPage1264


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder