Show simple item record

dc.contributor.authorMartínez-Seara Alonso, M. Teresa
dc.contributor.authorVillanueva Castelltort, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2007-04-26T16:56:21Z
dc.date.available2007-04-26T16:56:21Z
dc.date.created1999
dc.date.issued1999
dc.identifier.urihttp://hdl.handle.net/2117/769
dc.description.abstractIn this paper we consider the standard map, and we study the invariant curve obtained by analytical continuation, with respect to the perturbative parameter E, of the invariant circle of rotation number the golden mean corresponding to the case E=0. We show that, if we consider the parameterization that conjugates the dynamics of this curve to an irrational rotation, the domain of definition of this conjugation has an asymptotic boundary of analyticity when E->0 (in the sense of the singular perturbation theory). This boundary is obtained studying the conjugation problem for the so-called semi-standard map. To prove this result we have used KAM-like methods adapted to the framework of singular perturbation theory, as well as matching techniques to join di erent pieces of the conjugation, obtained in different parts of its domain of analyticity.
dc.format.extent50
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subject.lcshDynamical systems
dc.subject.lcshFunctional equations
dc.subject.lcshHamiltonian dynamical systems
dc.subject.lcshLagrangian functions
dc.subject.otherInvariant Curves
dc.subject.otherStandard Map
dc.titleAsymptotic behaviour of the domain of analyticity of invariant curves of the standard map
dc.typeArticle
dc.subject.lemacEquacions funcionals
dc.subject.lemacHamilton, Sistemes de
dc.subject.lemacLagrange, Funcions de
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
dc.subject.amsClassificació AMS::39 Difference and functional equations::39B Functional equations and inequalities
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics
dc.rights.accessOpen Access
local.personalitzacitaciotrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record