Show simple item record

dc.contributor.authorModesto Galende, David
dc.contributor.authorZlotnik, Sergio
dc.contributor.authorHuerta, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.identifier.citationModesto, D., Zlotnik, S., Huerta, A. Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation. "Computer methods in applied mechanics and engineering", 01 Octubre 2015, p. 127-149.
dc.description.abstractSolving the Helmholtz equation for a large number of input data in an heterogeneous media and unbounded domain still represents a challenge. This is due to the particular nature of the Helmholtz operator and the sensibility of the solution to small variations of the data. Here a reduced order model is used to determine the scattered solution everywhere in the domain for any incoming wave direction and frequency. Moreover, this is applied to a real engineering problem: water agitation inside real harbors for low to mid-high frequencies. The Proper Generalized Decomposition (PGD) model reduction approach is used to obtain a separable representation of the solution at any point and for any incoming wave direction and frequency. Here, its applicability to such a problem is discussed and demonstrated. More precisely, the contributions of the paper include the PGD implementation into a Perfectly Matched Layer framework to model the unbounded domain, and the separability of the operator which is addressed here using an efficient higher-order projection scheme. Then, the performance of the PGD in this framework is discussed and improved using the higher-order projection and a Petrov-Galerkin approach to construct the separated basis. Moreover, the efficiency of the higherorder projection scheme is demonstrated and compared with the higher-order singular value decomposition.
dc.format.extent23 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes numèrics
dc.subject.lcshNumerical methods and algorithms
dc.subject.otherReduced order models
dc.subject.otherProper generalized decomposition
dc.subject.otherParameterized solutions
dc.subject.otherWave propagation
dc.titleProper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation
dc.subject.lemacAnàlisi numèrica
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::65 Numerical analysis::65E05 Numerical methods in complex analysis (potential theory, etc.)
dc.rights.accessOpen Access
dc.description.versionPostprint (author’s final draft)
upcommons.citation.authorModesto, D.; Zlotnik, S.; Huerta, A.
upcommons.citation.publicationNameComputer methods in applied mechanics and engineering

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain