Show simple item record

dc.contributor.authorNet Marcé, Marta
dc.contributor.authorSánchez Umbría, Juan
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física Aplicada
dc.date.accessioned2015-09-16T09:56:41Z
dc.date.available2015-09-16T09:56:41Z
dc.date.created2015-01-01
dc.date.issued2015-01-01
dc.identifier.citationNet, M., Sanchez, J. Continuation of bifurcations of periodic orbits for large-scale systems. "SIAM journal on applied dynamical systems", 01 Gener 2015, núm. 2, p. 674-698.
dc.identifier.issn1536-0040
dc.identifier.urihttp://hdl.handle.net/2117/76843
dc.description.abstractA methodology to track bifurcations of periodic orbits in large-scale dissipative systems depending on two parameters is presented. It is based on the application of iterative Newton-Krylov techniques to extended systems. To evaluate the action of the Jacobian it is necessary to integrate variational equations up to second order. It is shown that this is possible by integrating systems of dimension at most four times that of the original equations. In order to check the robustness of the method, the thermal convection of a mixture of two fluids in a rectangular domain has been used as a test problem. Several curves of codimension-one bifurcations, and the boundaries of an Arnold's tongue of rotation number 1/8, have been computed.
dc.format.extent25 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshBifurcation theory
dc.subject.lcshContinuation methods
dc.subject.lcshCombinatorial dynamics
dc.subject.othercontinuation methods
dc.subject.othernumerical computation of invariant objects
dc.subject.otherperiodic orbits
dc.subject.otherbifurcation tracking
dc.subject.otherextended systems
dc.subject.otherNewton-Krylov methods
dc.subject.othervariational equations
dc.subject.otherNAVIER-STOKES EQUATIONS
dc.subject.otherKRYLOV METHODS
dc.subject.otherCOMPUTATION
dc.subject.otherPOINTS
dc.subject.otherALGORITHM
dc.subject.otherGMRES
dc.subject.otherODES
dc.subject.otherFLOWS
dc.titleContinuation of bifurcations of periodic orbits for large-scale systems
dc.typeArticle
dc.subject.lemacBifurcació, Teoria de la
dc.subject.lemacDinàmica combinatòria
dc.contributor.groupUniversitat Politècnica de Catalunya. DF - Dinàmica No Lineal de Fluids
dc.identifier.doi10.1137/140981010
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://epubs.siam.org/doi/abs/10.1137/140981010
dc.rights.accessOpen Access
drac.iddocument16827741
dc.description.versionPostprint (author’s final draft)
upcommons.citation.authorNet, M.; Sanchez, J.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameSIAM journal on applied dynamical systems
upcommons.citation.volume14
upcommons.citation.number2
upcommons.citation.startingPage674
upcommons.citation.endingPage698


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder