Show simple item record

dc.contributor.authorMossaiby, Farshid
dc.contributor.authorGhaderian, M
dc.contributor.authorRossi, Riccardo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
dc.date.accessioned2015-07-30T09:58:14Z
dc.date.available2016-07-14T00:31:02Z
dc.date.created2015-07
dc.date.issued2015-07
dc.identifier.citationMossaiby, F., Ghaderian, M., Rossi, R. Implementation of a generalized exponential basis functions method for linear and non-linear problems. "International journal for numerical methods in engineering", Juliol 2015.
dc.identifier.issn0029-5981
dc.identifier.urihttp://hdl.handle.net/2117/76395
dc.descriptionThis is the accepted version of the following article: Mossaiby, F., Ghaderian, M., Rossi, R. Implementation of a generalized exponential basis functions method for linear and non-linear problems. International Journal for Numerical Methods in Engineering [on line]. Jul 2015, which has been published in final form at http://dx.doi.org/10.1002/nme.4985.
dc.description.abstractIn this paper, we address shortcomings of the method of exponential basis functions (EBF) by extending it to general linear and non-linear problems. In linear problems, the solution is approximated using a linear combination of exponential functions. The coefficients are calculated such that the homogenous form of equation is satisfied on some grid. To solve non-linear problems, they are converted to into a succession of linear ones using a Newton-Kantorovich approach. The generalized exponential basis functions method (GEBF) developed can be implemented with greater ease compared to EBF, as all calculations can be performed using real numbers and no characteristic equation is needed. The details of an optimized implementation are described. We compare GEBF on some benchmark problems with methods in the literature, such as variants of the boundary element method, where GEBF shows a good performance. Also in a 3D problem, we report the run time of the proposed method compared to Kratos, a parallel, highly optimized finite element code. The results show that in this example, to obtain the same level of error much less computational effort is needed in the proposed method. Practical limitations might be encountered however for large problems because of dense matrix operations involved.
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica
dc.subject.lcshFinite element method
dc.subject.lcshExponential functions
dc.subject.lcshLinear systems
dc.subject.lcshNonlinear systems
dc.subject.lcshDifferential equations, Partial
dc.subject.otherMeshless methods
dc.subject.otherExponential basis functions
dc.subject.otherLinear and non-linear problems
dc.subject.otherPartial differential equations
dc.subject.otherNewton-Kantorovich
dc.titleImplementation of a generalized exponential basis functions method for linear and non-linear problems
dc.typeArticle
dc.subject.lemacElements finits, Mètode dels
dc.subject.lemacFuncions exponencials
dc.subject.lemacSistemes lineals
dc.subject.lemacSistemes no lineals
dc.subject.lemacEquacions diferencials parcials
dc.contributor.groupUniversitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria
dc.identifier.doi10.1002/nme.4985
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://onlinelibrary.wiley.com/doi/10.1002/nme.4985/abstract
dc.rights.accessOpen Access
drac.iddocument16659150
dc.description.versionPostprint (author’s final draft)
upcommons.citation.authorMossaiby, F.; Ghaderian, M.; Rossi, R.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameInternational journal for numerical methods in engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder