dc.contributor.author | Bruguera Padró, Maria Montserrat |
dc.contributor.author | Chasco Ugarte, Maria Jesús |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I |
dc.date.accessioned | 2007-04-25T18:40:28Z |
dc.date.available | 2007-04-25T18:40:28Z |
dc.date.issued | 1998 |
dc.identifier.uri | http://hdl.handle.net/2117/762 |
dc.description.abstract | A reflexive topological group G is called strongly reflexive if each closed sub-group and each Hausdorff quotient of the group G and of its dual group is reflexive.
In this paper we establish the adequate concept of strong reflexivity for convergence groups and we prove that the product of countable many locally compact topological groups and complete metrizable nuclear groups are BB-strongly
reflexive. |
dc.format.extent | 20 pages |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 2.5 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/es/ |
dc.subject.lcsh | Topological groups |
dc.subject.lcsh | Topological linear spaces |
dc.subject.other | Pontryagin duality theorem |
dc.subject.other | dual group |
dc.subject.other | convergence group |
dc.subject.other | continuous convergence |
dc.subject.other | reflexive group |
dc.subject.other | strong reflexive group |
dc.subject.other | k-space |
dc.subject.other | Cech complete group |
dc.subject.other | k-group |
dc.title | Strong reflexivity of Abelian groups |
dc.type | Article |
dc.subject.lemac | Espais topològics |
dc.subject.lemac | Lie, Grups de |
dc.contributor.group | Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions |
dc.subject.ams | Classificació AMS::22 Topological groups, lie groups::22A Topological and differentiable algebraic systems |
dc.subject.ams | Classificació AMS::46 Associative rings and algebras::46A Topological linear spaces and related structures |
dc.rights.access | Open Access |
local.personalitzacitacio | true |