dc.contributor.author | Salazar González, Fernando |
dc.contributor.author | Toledo Municio, Miguel Ángel |
dc.contributor.author | Oñate Ibáñez de Navarra, Eugenio |
dc.contributor.author | Morán Moya, Rafael |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria |
dc.date.accessioned | 2015-07-17T12:25:26Z |
dc.date.available | 2017-09-30T00:30:28Z |
dc.date.created | 2015-09 |
dc.date.issued | 2015-09 |
dc.identifier.citation | Salazar, F., Toledo, M. A., Oñate, E., Morán, R. An empirical comparison of machine learning techniques for dam behaviour modelling. "Structural safety", Setembre 2015, p. 9-17. |
dc.identifier.issn | 0167-4730 |
dc.identifier.uri | http://hdl.handle.net/2117/76195 |
dc.description.abstract | Predictive models are essential in dam safety assessment. Both deterministic and statistical models applied in the day-to-day practice have demonstrated to be useful, although they show relevant limitations at the same time. On another note, powerful learning algorithms have been developed in the field of machine learning (ML), which have been applied to solve practical problems. The work aims at testing the prediction capability of some state-of-the-art algorithms to model dam behaviour, in terms of displacements and leakage. Models based on random forests (RF), boosted regression trees (BRT), neural networks (NN), support vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to predict 14 target variables. Prediction accuracy is compared with the conventional statistical model, which shows poorer performance on average. BRT models stand out as the most accurate overall, followed by NN and RF. It was also verified that the model fit can be improved by removing the records of the first years of dam functioning from the training set. |
dc.format.extent | 9 p. |
dc.language.iso | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic |
dc.subject | Àrees temàtiques de la UPC::Enginyeria civil::Enginyeria hidràulica, marítima i sanitària::Embassaments i preses |
dc.subject.lcsh | Dam safety |
dc.subject.lcsh | Neural networks (Computer science) |
dc.subject.lcsh | Machine learning |
dc.subject.other | Dam monitoring |
dc.subject.other | Dam safety |
dc.subject.other | Machine learning |
dc.subject.other | Boosted regression trees |
dc.subject.other | Neural networks |
dc.subject.other | Random forests |
dc.subject.other | MARS |
dc.subject.other | Support vector machines |
dc.subject.other | Leakage flow |
dc.title | An empirical comparison of machine learning techniques for dam behaviour modelling |
dc.type | Article |
dc.subject.lemac | Preses (Enginyeria) -- Mesures de seguretat |
dc.subject.lemac | Aprenentatge automàtic |
dc.contributor.group | Universitat Politècnica de Catalunya. GMNE - Grup de Mètodes Numèrics en Enginyeria |
dc.identifier.doi | 10.1016/j.strusafe.2015.05.001 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.strusafe.2015.05.001 |
dc.rights.access | Open Access |
local.identifier.drac | 16669302 |
dc.description.version | Postprint (author’s final draft) |
local.citation.author | Salazar, F.; Toledo, M. A.; Oñate, E.; Morán, R. |
local.citation.publicationName | Structural safety |
local.citation.volume | 56 |
local.citation.startingPage | 9 |
local.citation.endingPage | 17 |