Show simple item record

dc.contributor.authorSalazar González, Fernando
dc.contributor.authorToledo Municio, Miguel Ángel
dc.contributor.authorOñate Ibáñez de Navarra, Eugenio
dc.contributor.authorMorán Moya, Rafael
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
dc.date.accessioned2015-07-17T12:25:26Z
dc.date.available2017-09-30T00:30:28Z
dc.date.created2015-09
dc.date.issued2015-09
dc.identifier.citationSalazar, F., Toledo, M. A., Oñate, E., Morán, R. An empirical comparison of machine learning techniques for dam behaviour modelling. "Structural safety", Setembre 2015, p. 9-17.
dc.identifier.issn0167-4730
dc.identifier.urihttp://hdl.handle.net/2117/76195
dc.description.abstractPredictive models are essential in dam safety assessment. Both deterministic and statistical models applied in the day-to-day practice have demonstrated to be useful, although they show relevant limitations at the same time. On another note, powerful learning algorithms have been developed in the field of machine learning (ML), which have been applied to solve practical problems. The work aims at testing the prediction capability of some state-of-the-art algorithms to model dam behaviour, in terms of displacements and leakage. Models based on random forests (RF), boosted regression trees (BRT), neural networks (NN), support vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to predict 14 target variables. Prediction accuracy is compared with the conventional statistical model, which shows poorer performance on average. BRT models stand out as the most accurate overall, followed by NN and RF. It was also verified that the model fit can be improved by removing the records of the first years of dam functioning from the training set.
dc.format.extent9 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Enginyeria hidràulica, marítima i sanitària::Embassaments i preses
dc.subject.lcshDam safety
dc.subject.lcshNeural networks (Computer science)
dc.subject.lcshMachine learning
dc.subject.otherDam monitoring
dc.subject.otherDam safety
dc.subject.otherMachine learning
dc.subject.otherBoosted regression trees
dc.subject.otherNeural networks
dc.subject.otherRandom forests
dc.subject.otherMARS
dc.subject.otherSupport vector machines
dc.subject.otherLeakage flow
dc.titleAn empirical comparison of machine learning techniques for dam behaviour modelling
dc.typeArticle
dc.subject.lemacPreses (Enginyeria) -- Mesures de seguretat
dc.subject.lemacAprenentatge automàtic
dc.contributor.groupUniversitat Politècnica de Catalunya. GMNE - Grup de Mètodes Numèrics en Enginyeria
dc.identifier.doi10.1016/j.strusafe.2015.05.001
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.strusafe.2015.05.001
dc.rights.accessOpen Access
local.identifier.drac16669302
dc.description.versionPostprint (author’s final draft)
local.citation.authorSalazar, F.; Toledo, M. A.; Oñate, E.; Morán, R.
local.citation.publicationNameStructural safety
local.citation.volume56
local.citation.startingPage9
local.citation.endingPage17


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record