An implicit stabilized finite element method for the compressible Navier-Stokes equations using finite calculus
dc.contributor.author | Kouhi Esfahani, Mohammad |
dc.contributor.author | Oñate Ibáñez de Navarra, Eugenio |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria |
dc.date.accessioned | 2015-07-17T10:41:26Z |
dc.date.available | 2017-05-31T00:30:11Z |
dc.date.created | 2015-07 |
dc.date.issued | 2015-07 |
dc.identifier.citation | Kouhi, M., Oñate, E. An implicit stabilized finite element method for the compressible Navier-Stokes equations using finite calculus. "Computational Mechanics", Juliol 2015, núm. 1, The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-015-1161-2, p. 113-129. |
dc.identifier.issn | 0178-7675 |
dc.identifier.uri | http://hdl.handle.net/2117/76192 |
dc.description.abstract | A new implicit stabilized formulation for the numerical solution of the compressible Navier-Stokes equations is presented. The method is based on the finite calculus (FIC) scheme using the Galerkin finite element method (FEM) on triangular grids. Via the FIC formulation, two stabilization terms, called streamline term and transverse term, are added to the original conservation equations in the space-time domain. The non-linear system of equations resulting from the spatial discretization is solved implicitly using a damped Newton method benefiting from the exact Jacobian matrix. The matrix system is solved at each iteration with a preconditioned GMRES method. The efficiency of the proposed stabilization technique is checked out in the solution of 2D inviscid and laminar viscous flow problems where appropriate solutions are obtained especially near the boundary layer and shock waves. The work presented here can be considered as a follow up of a previous work of the authors Kouhi, Oate (Int J Numer Methods Fluids 74:872-897, 2014). In that paper, the stabilized Galerkin FEM based on the FIC formulation was derived for the Euler equations together with an explicit scheme. In the present paper, the extension of this work to the Navier-Stokes equations using an implicit scheme is presented. |
dc.format.extent | 17 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits |
dc.subject.lcsh | Navier-Stokes equations--Numerical solutions |
dc.subject.other | High-speed compressible flows |
dc.subject.other | Navier-Stokes equations |
dc.subject.other | Stabilized finite element |
dc.subject.other | Finite calculus |
dc.subject.other | Implicit scheme |
dc.subject.other | COMPUTATIONAL FLUID-DYNAMICS |
dc.subject.other | INVISCID SUPERSONIC FLOWS |
dc.subject.other | INCOMPRESSIBLE FLOWS |
dc.subject.other | GENERAL ALGORITHM |
dc.subject.other | SUPG FORMULATION |
dc.subject.other | GALILEAN INVARIANCE |
dc.subject.other | SHOCK HYDRODYNAMICS |
dc.subject.other | NUMERICAL-SOLUTION |
dc.subject.other | EULER EQUATIONS |
dc.subject.other | TRANSPORT |
dc.title | An implicit stabilized finite element method for the compressible Navier-Stokes equations using finite calculus |
dc.type | Article |
dc.subject.lemac | Equacions de Navier-Stokes -- Mètodes numèrics |
dc.contributor.group | Universitat Politècnica de Catalunya. GMNE - Grup de Mètodes Numèrics en Enginyeria |
dc.identifier.doi | 10.1007/s00466-015-1161-2 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://link.springer.com/article/10.1007/s00466-015-1161-2/fulltext.html |
dc.rights.access | Open Access |
local.identifier.drac | 16674467 |
dc.description.version | Postprint (published version) |
local.citation.author | Kouhi, M.; Oñate, E. |
local.citation.other | The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-015-1161-2 |
local.citation.publicationName | Computational Mechanics |
local.citation.volume | 56 |
local.citation.number | 1 |
local.citation.startingPage | 113 |
local.citation.endingPage | 129 |
Files in this item
This item appears in the following Collection(s)
-
Articles de revista [286]
-
Articles de revista [138]
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder