Show simple item record

dc.contributor.authorKouhi Esfahani, Mohammad
dc.contributor.authorOñate Ibáñez de Navarra, Eugenio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
dc.date.accessioned2015-07-17T10:41:26Z
dc.date.available2017-05-31T00:30:11Z
dc.date.created2015-07
dc.date.issued2015-07
dc.identifier.citationKouhi, M., Oñate, E. An implicit stabilized finite element method for the compressible Navier-Stokes equations using finite calculus. "Computational Mechanics", Juliol 2015, núm. 1, The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-015-1161-2, p. 113-129.
dc.identifier.issn0178-7675
dc.identifier.urihttp://hdl.handle.net/2117/76192
dc.description.abstractA new implicit stabilized formulation for the numerical solution of the compressible Navier-Stokes equations is presented. The method is based on the finite calculus (FIC) scheme using the Galerkin finite element method (FEM) on triangular grids. Via the FIC formulation, two stabilization terms, called streamline term and transverse term, are added to the original conservation equations in the space-time domain. The non-linear system of equations resulting from the spatial discretization is solved implicitly using a damped Newton method benefiting from the exact Jacobian matrix. The matrix system is solved at each iteration with a preconditioned GMRES method. The efficiency of the proposed stabilization technique is checked out in the solution of 2D inviscid and laminar viscous flow problems where appropriate solutions are obtained especially near the boundary layer and shock waves. The work presented here can be considered as a follow up of a previous work of the authors Kouhi, Oate (Int J Numer Methods Fluids 74:872-897, 2014). In that paper, the stabilized Galerkin FEM based on the FIC formulation was derived for the Euler equations together with an explicit scheme. In the present paper, the extension of this work to the Navier-Stokes equations using an implicit scheme is presented.
dc.format.extent17 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshNavier-Stokes equations--Numerical solutions
dc.subject.otherHigh-speed compressible flows
dc.subject.otherNavier-Stokes equations
dc.subject.otherStabilized finite element
dc.subject.otherFinite calculus
dc.subject.otherImplicit scheme
dc.subject.otherCOMPUTATIONAL FLUID-DYNAMICS
dc.subject.otherINVISCID SUPERSONIC FLOWS
dc.subject.otherINCOMPRESSIBLE FLOWS
dc.subject.otherGENERAL ALGORITHM
dc.subject.otherSUPG FORMULATION
dc.subject.otherGALILEAN INVARIANCE
dc.subject.otherSHOCK HYDRODYNAMICS
dc.subject.otherNUMERICAL-SOLUTION
dc.subject.otherEULER EQUATIONS
dc.subject.otherTRANSPORT
dc.titleAn implicit stabilized finite element method for the compressible Navier-Stokes equations using finite calculus
dc.typeArticle
dc.subject.lemacEquacions de Navier-Stokes -- Mètodes numèrics
dc.contributor.groupUniversitat Politècnica de Catalunya. GMNE - Grup de Mètodes Numèrics en Enginyeria
dc.identifier.doi10.1007/s00466-015-1161-2
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://link.springer.com/article/10.1007/s00466-015-1161-2/fulltext.html
dc.rights.accessOpen Access
local.identifier.drac16674467
dc.description.versionPostprint (published version)
local.citation.authorKouhi, M.; Oñate, E.
local.citation.otherThe final publication is available at Springer via http://dx.doi.org/10.1007/s00466-015-1161-2
local.citation.publicationNameComputational Mechanics
local.citation.volume56
local.citation.number1
local.citation.startingPage113
local.citation.endingPage129


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder