Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

57.066 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the bicanonical map of irregular varieties

Thumbnail
View/Open
bicanonical.pdf (312,8Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/7606

Show full item record
Barja Yáñez, Miguel ÁngelMés informacióMés informacióMés informació
Lahoz Vilalta, Martí
Naranjo del Val, Joan Carles
Pareschi, Giusseppe
Document typeResearch report
Defense date2010-02
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
From the point of view of uniform bounds for the birationality of pluricanonical maps, irregular varieties of general type and maximal Albanese dimension behave similarly to curves. In fact Chen-Hacon showed that, at least when their holomorphic Euler characteristic is positive, the tricanonical map of such varieties is always birational. In this paper we study the bicanonical map. We consider the natural subclass of varieties of maximal Albanese dimension formed by primitive varieties of Albanese general type. We prove that the only such varieties with non-birational bicanonical map are the natural higher-dimensional generalization to this context of curves of genus 2: varieties birationally equivalent to the theta-divisor of an indecomposable principally polarized abelian variety. The proof is based on the (generalized) Fourier-Mukai transform
Is part ofarXiv:0907.4363
URIhttp://hdl.handle.net/2117/7606
URL other repositoryhttp://arxiv.org/pdf/0907.4363.pdf
Collections
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions - Reports de recerca [102]
  • Departament de Matemàtiques - Reports de recerca [389]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
bicanonical.pdf312,8KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina